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Abstract: Grassland is the important terrestrial ecosystem, aboveground biomass is an important 
indicator of the productivity of grassland ecosystem, monitoring grassland is very important to the 
assessment of the current status of grassland growth and the conservation and development of grassland 
resources to Lanzhou city. In this study, the reflectance was extracted and the 9 vegetation indexes was 
calculated from Landsat images that combined with field sampling data of the grassland aboveground 
biomass in Lanzhou city in July-August 2021 to construct the two machine models that Random Forest 
model (RF) and eExtreme Gradient Boosting model (XGBoost) and chose the best model to invert the 
grass aboveground biomass in Lanzhou City from 2000 to 2023 and analyze its spatial and temporal 
dynamics.The results of the study show that: (1) The reflectance of other bands except b5-NIR band and 
nine vegetation indices were significantly correlated with grassland aboveground biomass by Pearson 
correlation analysis, so the remaining 14 factors except b5-NIR band were selected as model input 
variables. (2) Compared with the XGBoost model (R2 of 0.78, RMSE of 37.03), the RF (R2 of 0.89, RMSE 
of 23.28) model has a higher accuracy and it was more suitable for the inversion of aboveground biomass 
of grassland in Lanzhou city. (3) In time, the average value of aboveground biomass of grassland in 
Lanzhou City from 2000 to 2023 showed an increasing trend as a whole; In space, the aboveground 
biomass of grassland decreased firstly from southeast to northwest and then increased in Lanzhou City. 
The area of high value zone of grassland aboveground biomass increased, and the low value zone kept 
transforming to the high value zone. This study can provide theoretical reference and technical support 
for the estimation of aboveground biomass of grassland and the protection of grassland ecosystem in 
Lanzhou City. 

Keywords: grassland aboveground biomass; Landsat remote sensing data; machine learning; vegetation 
index; spatial and temporal variation 

1. Introduction 

Grassland ecosystem is the main type of ecosystem in arid and semi-arid areas, which can fix the 
surface soil, improve the soil's ability to resist wind and water erosion, and play an important role in 
maintaining ecological balance and regional stability[1-2]. Lanzhou City is located in the transition zone 
from the Xizang Plateau to the Loess Plateau, with an arid climate and a highly complex and sensitive 
natural environment. Grassland is the only type of vegetation in Lanzhou City that can grow by natural 
precipitation, and the advantage of the developed underground roots of grassland makes it able to grow 
rapidly under poor climate conditions, with ecological functions such as windbreak and sand fixation, 
climate regulation, and water conservation, etc., which plays an important role in Lanzhou City's 
ecological environment, carbon cycle, and the maintenance of ecological balance[3-4]. However, little 
research has been done on the grasslands in Lanzhou City, and there are problems such as unclear status 
and spatial and temporal changes of grasslands, which ignores the importance of grasslands for Lanzhou 
City. Therefore, the establishment of a high-precision aboveground biomass estimation model can 
provide technical guidance for the monitoring of aboveground biomass of grassland in Lanzhou City, 
and provide a basis for the ecological protection of grassland in Lanzhou City and the rational utilization 
of resources, which is of great significance to the sustainable development and scientific management of 
grassland in Lanzhou City[5-6].  

The monitoring methods of aboveground biomass of grassland are divided into ground method and 
remote sensing inversion method. Traditional aboveground biomass survey of grassland usually obtains 
the measured data of regional grassland directly through cyclic sampling, mowing and other methods, 
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which is highly accurate but requires a lot of manpower and material resources, and has limitations in 
both time and space scales[7]. With the development of remote sensing technology, a variety of remote 
sensing data, such as MODIS, Landsat and Sentinel-2, have become the main basis for the monitoring of 
aboveground biomass in grasslands[8-10]. Most of the studies have adopted the method of constructing 
inversion models by matching ground truth data with satellite images to estimate the aboveground 
biomass of grassland, which has higher accuracy and relatively less reliance on ground sampling data 
[11-12], and has been widely used in land use change, vegetation cover studies, and vegetation parameter 
estimation [13-15]. Zhang [16], Wang Ting [17], Zeng Na [18], and Cong [19] established inverse models 
of aboveground biomass of grassland using Landsat data to analyze the spatial and temporal changes of 
aboveground biomass of grassland and its response to climate change, respectively. The above studies 
have shown that Landsat data can enable effective estimation of aboveground biomass in grasslands. The 
model was constructed using traditional parametric regression methods with relatively large inversion 
errors. In recent years, machine learning algorithms have achieved good results in remote sensing 
monitoring of vegetation [20], which is based on the complete spectral set for modeling, can make full 
use of the spectral information, has the characteristics of nonlinearity, high prediction accuracy, and 
strong generalization ability, and has been widely applied in the field of remote sensing based on 
nonparametric machine learning algorithms for estimating the aboveground biomass of grassland [21]. 
Among them, Random Forest (RF) utilizes multiple datasets for integrated regression and is able to deal 
with the complex relationship between the predicted values caused by noise and a large amount of data 
[17]. The eXtreme Gradient Boosting (XGBoost) model incorporates a regular term in the cost function 
that controls the complexity of the model, prevents overfitting and reduces the amount of computation 
[22]. Li [23], Yinghui Zhao [24], and Yuxin Tan [25] compared and analyzed the performance of 
traditional regression methods and machine learning algorithms for estimating aboveground biomass of 
grassland, and found that RF and XGBoost models had better estimation results. 

Based on the above research, this study selects Landsat data to extract reflectance and calculate 9 
vegetation indices as predictor variables and the measured aboveground biomass of grassland in Lanzhou 
City in July-August 2021 to establish two machine learning models, RF and XGBoost, and uses the 
coefficient of determination (R2), and root-mean-square error (RMSE), to evaluate the model accuracy, 
and compares the applicability of the two models to invert the aboveground biomass of grassland in 
Lanzhou City, and the optimal model was selected to invert the aboveground biomass of grassland in 
Lanzhou City from 2000 to 2023 and analyze its spatial and temporal changes, with a view to providing 
theoretical references for the estimation of aboveground biomass of grassland in Lanzhou City and the 
protection of grassland ecosystems. 

2. Materials and methods 

2.1 Study area 

Lanzhou City is located in the central part of Gansu Province and is the capital of Gansu Province, 
with a geographic location of 35°34′20′′-37°07′07′′N, 102°35′58′′-104°34′29′′E. It is at the confluence of 
the Qinghai-Xizang Plateau, the Loess Plateau, and the Inner Mongolia Plateau, with a total area of 1.31 
× 104 km2, and an elevation of 1,500-3,000 m above sea level [26]. The topography of Lanzhou City is 
high in the west and south and low in the northeast, with the Yellow River flowing from southwest to 
northeast. It has a temperate continental climate with an average annual temperature of 9.8°C, an average 
annual precipitation of about 327 mm, mainly concentrated in June-September, and a potential annual 
evaporation of 1437.7 mm [27-28]. Lanzhou City is rich in water resources, the region has the Yellow 
River as well as the Yellow River's first-class tributaries Huangshui, Zhuanglang River and second-class 
tributaries Datong River and other important water source culverts [29]. The soil type is mainly gray 
calcareous soil [30], and the area of grassland in Lanzhou City is 7102.82 km2, accounting for 54.2% of 
the total area of Lanzhou City. It is mainly distributed in Yongdeng County, Gaolan County, and Yuchong 
County, accounting for 90.38% of the grasslands in Lanzhou City [31]. The grassland vegetation consists 
mainly of arid and saline types of plants, mainly conifers Stipa capillata Linn, Reaumuria songarica, 
Ajania achilloides, Stipa krylovii, Stipa brevifllora, Ajania przewalskii, Artemisia sacrorum Ledeb, Stipa 
przewalskyi, Peganum harmala, Salsola passerina, viridis, Caragana roborovskyi Kom, Achnatherum 
splendens, Sacrorum, Artemisia frigida, Nitraria tangutorum etc [32]. 
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2.2 Data sources 

2.2.1 Sampling data 

The data of aboveground biomass of grassland in Lanzhou City were obtained from the grassland 
survey of Lanzhou Forestry Bureau Grassland Monitoring Station in July-August 2021, and a total of 
111 sample plots were set up (Figure 1). In Lanzhou City, representative topographic features were 
selected to set up sample plots and evenly distributed, with a sample size of 1 km × 1 km. For sample 
plots with only herbaceous, semi-shrub and dwarf shrub plants, three sample squares were set up in each 
sample plot, and the distance between sample squares in the sample plots was not less than 25 m, with a 
sample area of 1 m × 1 m. In sample plots with shrubs and tall herbaceous plants, a sample square with 
a size of 10 m × 10 m was set up in the sample plot. In the sample plots with shrubs and tall herbs, 10 m 
× 10 m sample squares were set up in the sample plots, and the relevant data of herbs, half-shrubs and 
dwarf shrubs, and shrubs and tall herbs were measured in the sample squares. The herbaceous plants in 
the sample plots were mowed flush and bagged, and latitude, longitude, elevation, aboveground biomass, 
herbaceous height, and cover were recorded, and then dried naturally to a constant weight to obtain the 
aboveground biomass of grass dry weight, and the average of the aboveground biomass of grass dry 
weight of the three sampling plots within the sample plots was taken as the biomass of the samples. 

 
Figure 1: Spatial distribution of sampling points in the study area. 

2.2.2 Remote sensing data 

Remote sensing image data were selected from Landsat-5 TM, Landsat-8 OLI data, which were 
obtained by downloading from the United States Geological Survey (https://earthexplorer.usgs.gov). 

Landsat images have a spatial resolution of 30 m and a minimum revisit period of 16 days. In order 
to minimize the difference between the imaging time of the image and the survey time of the ground-
truthing data, the image with complete coverage of the sample plots and the imaging time closest to the 
sampling time was selected when downloading the image. In this study, Landsat-5 TM images and 
Landsat-8 OLI images with June-September coverage of the sampling sites and the whole territory and 
with less than 10% cloud coverage for the years 2000, 2005, 2010, 2015, 2020, and 2023 were selected. 
Due to image acquisition time constraints, the Landsat-5 TM sensor type was selected for images between 
2000 and 2010, and the Landsat-8 OLI sensor type was selected for images between 2015 and 2023. This 
study download the Collection-2 Level-2 product, which has been radiometrically calibrated and 
atmospherically corrected, and only need to crop in ENVI 5.3 using the Lanzhou city boundary to get the 
pre-processed remote sensing image. 

2.2.3 Other data 

The Lanzhou City DEM data were obtained from the NASA Earth Science Data website 
(https://nasadaacs.eos.nasa.gov) at a resolution of 30m. Administrative boundaries of Lanzhou City are 
from the website of the State Bureau of Surveying and Mapping (http://www.sbsm.gov.cn). 

https://earthexplorer.usgs.gov/
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Meteorological data are from the National Xizang Plateau Scientific Data Center (http://data.tpdc.ac.cn). 

2.3 Methods 

2.3.1 Remote sensing variable selection 

In this study, based on Landsat remote sensing data, b2-b7 reflectance data (b2- Blue band, b3-Green 
band, b4-Red band, b5-Near-Infrared band, b6-Short-Wave Infrared 1, and b7-Short-Wave Infrared 2) 
and nine vegetation indices were selected (Table 1): Normalized Difference Vegetation Index, Green 
Normalized Difference Vegetation Index, Difference Vegetation Index, Ratio Vegetation Index, 
Atmospherically Resistant Vegetation Index, Soil-Adjusted Vegetation Indices, Enhanced Vegetation 
Index, Modified Soil Adjusted Vegetation Index and Optimized Soil Adjusted Vegetation Index. The 
processed remote sensing images were loaded in ArcGIS 10.7 by bands, corresponding to the field 
sampling points by geographic coordinates, and the spectral reflectance of the sampling points was 
extracted by using the "Multi-Value Extraction to Points Tool", and then the vegetation index was 
calculated. 

Table 1: Calculation formulas of vegetation indexes. 

Vegetation 
index Calculation formula Select reason 

NDVI 
NIR Red
NIR Red

−
+

 Higher soil background sensitivity under 
medium vegetation cover 

GNDVI 
NIR Green
NIR Green

−
+

 Highly sensitive to chlorophyll 

DVI NIR Red−  Sensitive to the effects of soil 
background 

RVI 
NIR
Red

 
Highly correlated with vegetation biotic 

factors such as leaf area index and 
chlorophyll content 

ARVI 
NIR Blue
NIR Blue

−
+

 Reducing the dependence of vegetation 
indices on the atmosphere 

SAVI ( )( )1
 

L NIR Red
NIR RED L
+ −

+ +
    L=0.5 Integration of soil background factors 

EVI 
2.5( Re )

6Re 7.5 1
NIR d

NIR d Blue
−

+ − +
 More accurate representation of 

vegetation growth 

MSAVI 
22 1 (2 1) 8( )

2
NIR NIR NIR Red+ − + − −

 
Mitigation of soil impacts on vegetation 

OSAVI 
0.16

NIR Red
NIR Red

−
+ +

 Soil effects can be better excluded 

2.3.2 Variable screening 

In this study, b2-b7 reflectance and nine vegetation indices were subjected to Pearson correlation 
analysis with the ground-based measured aboveground biomass values of grassland in SPSS 19.0, so as 
to select the best modeling factors for the inversion of aboveground biomass of grassland in Lanzhou 
City. 

2.3.3 Model construction 

RF is a nonparametric machine learning algorithm that employs multiple decision trees to train 
samples and integrate predictions, where multiple samples are constructed from the original samples after 
randomly extracting the data using bootstrap resampling technique, and then N decision trees are 
constructed by using random splitting of nodes for each resampled sample [33]. During the growth of 
each tree, mtry of the total feature variables are randomly selected for internal node division; finally, the 
predictions of the N decision trees are assembled and voting is used to decide the category of the new 
sample [34]. It has higher accuracy and lower root-mean-square error than other traditional statistical 
models, can handle high-dimensional data without feature selection, has good noise immunity and stable 
performance, and can avoid overfitting to some extent [35]. RF model parameters: the number of decision 
classification trees (ntree), the number of features split by nodes (mtry) and the minimum number of 

http://data.tpdc.ac.cn/
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decision tree nodes (nodesize), in this paper, the ntree used is 100, the mtry is 4 and the nodesize is 5. 

XGBoost is an integrated learning algorithm belonging to the class of gradient boosting tree 
algorithms, the basic principle of which is to allow a new base model to fit the deviations of the previous 
model, thus continuously reducing the deviations of the model [36]. The model is optimized by adjusting 
parameters such as the learning rate of the XGBoost training set and the max depth. In this paper, the 
training set learning rate is 0.1 and max depth is 10. 

2.3.4 Accuracy evaluation 

The model was validated using the retained sample method, where 70% of the samples were randomly 
selected for modeling using the R language 4.0.2 software, and the remaining 30% of the samples were 
used for model accuracy testing. In this study, Coefficient of Determination (R2) and Root Mean Squared 
Error (RMSE) were chosen to verify the model accuracy. The closer R2 is to 1, the greater the correlation 
between predicted and true values, and the better the fit. The smaller the RMSE is, the smaller the bias 
is, and the better the model is [36]. 
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Where 𝑌𝑌𝑖𝑖 is the measured value of the sample, 𝑌𝑌𝚤𝚤�  is the value of the model inversion, 𝑦𝑦𝑖𝑖 is the 
mean measured value of the sample biomass, and n  is the number of samples. 

3. Results 

3.1 Modeling Factors Selection 

In order to improve the accuracy of the model, the b2-b7 reflectance and nine vegetation indices were 
correlated with the measured data of aboveground biomass of grassland in Lanzhou City in July-August 
2021 (Figure 2). The results showed that the aboveground biomass of grass was significantly negatively 
correlated with b2, b3, b4, b6, and b7, and significantly positively correlated with nine vegetation indices, 
with correlation coefficients above 0.75, and the correlation with b5 was not significant. Therefore, 14 
factors other than b5 were selected as input variables of the machine model, and grassland aboveground 
biomass as output variables of the model. 

The grassland aboveground biomass estimation model was established based on the above 14 
modeling factors, and the 14 modeling factors were ranked in terms of feature importance based on RF 
and XGBoost models (Figure 3). The importance of vegetation index was higher, with GNDVI, RVI, and 
NDVI accounting for 17.2%, 15.7%, and 13.3%, respectively, in the RF model, and NDVI, GNDVI, and 
OSAVI accounting for 57.1%, 31.6%, and 4.4%, respectively, in the XGBoost model, which was in line 
with the results of the correlation in Figure 2. 
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Figure 2: Correlation coefficients between the aboveground biomass and the explanatory variables. 

 
Figure 3: Importance ranking of predictor variables based on RF and XGBoost models. 

3.2 Evaluation of model accuracy 

The accuracy of the inversion model in this paper was measured by R2 and RMSE (Table 2). The R2 
of the modeling samples and the validation samples of the RF were 0.89 and 0.72, and the RMSE was 
23.28 and 54.38 respectively, while that of the modeling samples and the validation samples of XGBoost 
model were 0.78 and 0.67, and the RMSE was 37.03 and 59.09 respectively. The results showed that the 
RF model was better than the XGBoost model in constructing the inversion model of aboveground 
biomass of grassland in Lanzhou City. The results showed that the RF model had a better fitting effect 
than the XGBoost model and was more suitable for constructing the inverse model of aboveground 
biomass of grassland in Lanzhou City. In order to evaluate the accuracy of the RF model more intuitively, 
this study compared the measured values of aboveground biomass of grassland with the estimated values 
of the model, and plotted the scatter plots of the measured values and the estimated values (Figure 4). It 
was found that the model estimation effect was significantly higher than the discrete distribution points 
of the aboveground biomass of grassland in the more aggregated interval (30-300g/m2), which further 
proved the applicability of the model. 

Table 2: Inversion accuracy metrics of RF and XGBoost models. 

Models samples R2 RMSE 

RF model modeling samples 0.89 23.28 
Verification Sample 0.72 54.38 

XGBoost model modeling samples 0.78 37.03 
Verification Sample 0.67 59.09 
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Figure 4: Accuracy verification of RF model simulation results. 

3.3 Spatial and temporal changes of aboveground biomass of grassland in Lanzhou City 

In this paper, the aboveground biomass of grassland in Lanzhou City was categorized into six grades: 
<100 g/m2, 100-150 g/m2, 150-200 g/m2, 200-250 g/m2, 250-300 g/m2 and >300 g/m2. The spatial and 
temporal changes of the aboveground biomass of grassland in Lanzhou City from 2000 to 2023 were 
analyzed by combining the statistics of the area and percentage of aboveground biomass of grassland of 
different grades (Table 3), the changes of the annual average value (Figure 5) and the spatial distribution 
(Figure 6). 

In time, the annual mean value of grassland aboveground biomass showed an overall increasing trend 
from 2000 to 2023, with a decrease in the mean value of grassland aboveground biomass from 2010 to 
2015 and from 2020 to 2023, which decreased by 22 and 24 g/m2, respectively. 2005-2010 saw an 
increase in the mean value of grassland aboveground biomass by 18 g/m2 . 2015-2020 Mean aboveground 
biomass of grassland increased more, by 33 g/m2 (Figure 5). 

In space, the high value of aboveground biomass of grassland in Lanzhou City was mainly distributed 
in the southeast and northwest of Lanzhou City, and the value of aboveground biomass of grassland in 
the central part of the city was lower, which overall showed the distribution characteristics of decreasing 
first and then increasing from southeast to northwest (Figure 6). The aboveground biomass of grassland 
in central Lanzhou City is low, such as Gaolan County, eastern Yongdeng County and northwestern 
Yuchong County, with an average lower than 150g/m2; Aboveground biomass of grassland in southern 
Lanzhou City is moderate, about 150-250 g/m2; Aboveground biomass of grassland was higher in 
northwestern and southeastern Lanzhou City, averaging higher than 250 g/m2. In 2000, aboveground 
biomass of grassland was mainly in the range of 100-150 g/m2; In 2005, aboveground biomass of 
grassland was mainly in the range of 0-100 g/m2; In 2010, aboveground biomass of grassland was mainly 
in the range of 100-150 g/m2 and 200-250 g/m2; In 2015, aboveground biomass of grassland was mainly 
in the range of 100-150 g/m2 and 150-200 g/m2; In 2020, aboveground biomass of grassland was mainly 
in the range of 150-200 g/m2 and 200-250 g/m2; and in 2023, aboveground biomass of grassland was 
mainly in the range of 150-200 g/m2 (Figure 6). 

 
Figure 5: Inter-annual variation of the grassland aboveground bomass in Lanzhou city from 2000 to 

2023 
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From 2000 to 2023, the area of high value zone of aboveground biomass of grassland increased, the 
area of 150-200 g/m2, 200-250 g/m2 and 250-300 g/m2 increased by 1410.85 km2, 894.68 km2 and 243.73 
km2, respectively, and the area of low value zone (100-150 g/m2) decreased by 2906.39 km2 (Table 2). 
Using the area of different classes of aboveground biomass to calculate the transfer matrix (Figure 7), 
the stability of different classes of aboveground biomass can be assessed. Comparing the aboveground 
biomass transfers of different classes in the five time periods, it can be seen that the aboveground biomass 
in the low aboveground biomass area (<100 g/m2) and the high aboveground biomass area (250-300 
g/m2, >300 g/m2) during the period of 2000-2023 is the most stable, and it is difficult to be transformed 
once it is formed. The most easily transformed aboveground biomass was in the 150-200 g/m2 range. 
The 100-150 g/m2 area changed the most from 2000-2005, with a major shift to 150-200 g/m2, 200-250 
g/m2, 250-300 g/m2 and >300 g/m2. 2005-2010 mainly <100 g/m2 to 250-300 g/m2 and >300 g/m2. 2010-
2015 was dominated by the conversion of 100-150 g/m2 to 200-250 g/m2, 250-300 g/m2 and >300 g/m2, 
with little difference in the area of aboveground biomass converted between the classes. 2015-2020 
mainly 100-150 g/m2 to >300 g/m2. 2020-2023 mainly all grades to 100-150 g/m2. 

Table 3: Statistics on the area (km2) of different grassland aboveground biomass classes in Lanzhou 
city from 2000-2023 

Year Grassland aboveground biomass class 
<100g/m2 100-150 g/m2 150-200 g/m2 200-250 g/m2 250-300 g/m2 >300 g/m2 

2000 1868.6 7960.1 1191.4 1444.3 469.5 263.6 
2005 5783.5 4970.9 685.9 1101.4 654.5 0.1 
2010 1889.6 6653.1 2116.0 2150.0 384.6 2.8 
2015 2055.2 5367.7 3433.1 1968.8 151.7 0.2 
2020 599.0 4622.3 4024.7 2730.6 1047.9 170.0 
2023 2435.8 5053.7 2602.3 2339.0 713.2 50.3 

 
Figure 6: Spatial distribution of aboveground bomass of grassland in Lanzhou city from 2000-2023 
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Figure 7: Transfer matrix of aboveground bomass of grassland by grade in Lanzhou city from 2000-2023 

4. Discussion 

At the present stage, most of the domestic and international studies on aboveground biomass of 
grassland are based on the vegetation index to construct the inverse model of aboveground biomass of 
grassland, and the vegetation index is more sensitive than the single band [36]. In this study, based on 
the commonly used vegetation indices such as NDVI and GNDVI, indices such as OSAVI, MSAVI, and 
SAVI, which have strong ability to eliminate the influence of soil, were introduced to construct the 
inverse model of aboveground biomass of grassland. Different vegetation indices are complementary to 
each other and can synthesize the status of aboveground biomass of grassland [37]. The modeling process 
revealed a high importance of model characteristics for RVI, NDVI, OSAVI, SAVI and EVI, which are 
five vegetation indices based on the near-infrared and red light bands. It has been shown that vegetation 
indices calculated using the red and near-infrared bands can minimize the effects of factors such as 
atmosphere and soil [38-40]. The effect of soil background cannot be ignored with the low aboveground 
biomass of grassland in most areas of Lanzhou City, which may be one of the key factors that this type 
of vegetation index has a significant effect on the aboveground biomass of grassland in Lanzhou City. 
The combination of reflectance and vegetation index to construct an inverse model of aboveground 
biomass of grassland can improve the model accuracy, which is consistent with the results of Song Kexin 
[5], Zeng Na [41], Ling [42], et al. The results showed that the RF model was more accurate and stable, 
which was more suitable for inverting the aboveground biomass of grassland in Lanzhou City, which 
was consistent with the results of Wang Xuemei [43], Zhang Peng [44], Ma [45], and Zhang Huilong 
[46], which showed that the accuracy of the RF model for inverting aboveground biomass was higher. 

The aboveground biomass of grassland in Lanzhou City decreased and then increased from southeast 
to northwest, and the overall trend of aboveground biomass of grassland was increasing from 2000 to 
2023. Grassland aboveground biomass decreases from 2000-2005; grassland above-ground biomass 
increases from 2005-2020; and grassland above-ground biomass decreases from 2020-2023. In 2002, 
Gansu Province comprehensively carried out the project of returning farmland to forest and grassland 
throughout the province [47], paying attention to the construction of the ecological environment and 
promoting the urbanization process while protecting the ecological environment, and the overall biomass 
of grassland aboveground under the support of the policy showed an increasing trend. In 2005, there was 
less precipitation (Figure 8), and the growth of vegetation in arid and semi-arid regions was greatly 
affected by moisture. The results of Wang Gongxin [48] et al. showed that precipitation and air 
temperature had a close relationship with the growth of grasses in arid and semi-arid regions, and that 
there was a significant correlation between the amount of precipitation and aboveground biomass of 
grasses, which could be the main reason for the low aboveground biomass of grasses in 2005. Heavy 
rainfall hit Lanzhou City in 2015 with hail, severely affecting vegetation growth, which may have 
contributed to the low aboveground biomass of grasslands in 2015. In 2022, extreme weather occurred 
frequently in Lanzhou City, with low precipitation and severe spring drought in spring, and the summer 
temperature was the highest in the same period since 1961 (Figure 8), with low precipitation days 
throughout the year, and the drought repeated many times, which had a great impact on the growth of 
vegetation, and this was the main reason for the reduction of aboveground biomass of grassland in the 
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past two years. In general, better hydrothermal conditions are favorable for vegetation growth, and in 
arid and water-scarce areas, the increase in precipitation can be more efficiently utilized by vegetation, 
thus promoting vegetation growth, a conclusion that is more consistent with the findings of Yue xiao et 
al . The implementation of ecological conservation projects and the reduction of human activities are also 
important in promoting the growth of arid and semi-arid grasslands. 

Based on Landsat data and field sampling data of aboveground biomass of grassland in July-August 
2021, this paper constructs an inversion model of aboveground biomass of grassland using RF model 
and XGBoost model, compares the accuracy of the two models through R2 and RMSE, and selects the 
optimal model to invert the aboveground biomass of grassland in Lanzhou City in the period of 2000-
2023, and analyzes the characteristics of its spatial and temporal changes, so as to provide theoretical 
support for the remote monitoring of the aboveground biomass of grassland in Lanzhou City, as well as 
the rational use of grassland resources. The modeling factors selected in this paper are Landsat reflectance 
and vegetation index, although the accuracy is high, but there are still shortcomings, and in the future, it 
is necessary to comprehensively consider the remote sensing data with higher resolution and the factors 
of topography and geomorphology, land use, and soil physicochemical properties that affect the change 
of the aboveground biomass of grassland. In addition, the influence of human activities on the 
aboveground biomass of grassland should not be neglected . 

 
Figure 8: Changes in precipitation average temperature in the Lanzhou city from 2000-2022 

5. Conclusions 

In this study, based on Landsat multispectral data, we extracted reflectance and calculated 9 
vegetation indices, combined with the field sampling data of aboveground biomass of grassland in July-
August 2021, and constructed an inversion model of aboveground biomass of grassland by using the RF 
model and the XGBoost model, and then compared the accuracy of the two models through R2 and RMSE, 
and selected the optimal model to invert the aboveground biomass of grassland in Lanzhou City from 
2000-2023 and analyzed the characteristics of its spatial and temporal variations. The main conclusions 
are as follows: (1) Pearson correlation analysis revealed that the reflectance of all bands except b5 band 
and nine vegetation indices showed significant correlation with the aboveground biomass of grassland. 
(2) The R2 of the RF model was 0.89 and the RMSE was 23.28, while the R2 of the XGBoost model was 
0.78 and the RMSE was 37.03. Compared with the XGBoost model, the RF model has a higher accuracy 
in inverting the aboveground biomass of grasslands in Lanzhou City, and it is suitable for inverting the 
aboveground biomass of grasslands in Lanzhou City in a long time series. (3) Temporally, the mean value 
of grassland aboveground biomass showed an overall increasing trend from 2000 to 2023. Spatially, the 
aboveground biomass of grassland in Lanzhou City showed a trend of decreasing and then increasing 
from southeast to northwest. During the period 2000-2023, the low above-ground biomass of grassland 
(<100 g/m2) and the high aboveground biomass of grassland (250-300 g/m2, >300 g/m2) are more stable 
and difficult to be transformed once they are formed, and the easiest to be transformed is the above-
ground biomass of the interval of 150-200 g/m2. 
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