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Abstract: Against the backdrop of rapid development in artificial intelligence and sensor technology, 
autonomous vehicles are steadily moving toward practical application. An efficient, natural, and safe 
human-machine interaction (HMI) system has become the core for gaining user trust and achieving 
wide-scale adoption. Focusing on the specific scenario of L4-level autonomous driving, this study 
proposes an HMI framework integrating multimodal perception, adaptive decision-making, and 
cognitive load optimization. It particularly examines deep learning-based intent recognition algorithms, 
dynamic optimization strategies for takeover requests in emergency situations, and multi-channel 
fusion mechanisms for presenting interactive information. Through high-fidelity driving simulators and 
real-vehicle road tests, combined with eye-tracking, physiological signal monitoring, and other 
relevant methods, the system’s effectiveness in reducing cognitive load, enhancing situational 
awareness, and shortening takeover reaction time was validated. Data show that the optimized HMI 
reduces average driver takeover reaction time by 42.7%, increases situational understanding accuracy 
to 91.3%, and significantly lowers subjective workload index. This research provides key technical 
support for building a highly usable and safe human-machine co-driving paradigm for autonomous 
vehicles and holds great significance for promoting the commercialization of autonomous driving. 
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1. Introduction 

The automotive industry is undergoing profound changes centered on electrification, intelligence, 
and connectivity, with high-level autonomous driving technology becoming the focus of global 
competition. According to SAE’s definition, autonomous driving systems at Level 3 and above are 
required to perform all dynamic driving tasks within specific operational design domains (ODD), but 
still need human takeover when the system fails or exceeds the ODD. This role shift presents serious 
human factors engineering challenges. In autonomous driving mode, drivers are in an “out-of-the-loop” 
state, with significantly diminished situational awareness. When faced with sudden system takeover 
requests, they often exhibit delayed reactions and decision-making errors [1]. Traditional in-vehicle 
HMI design paradigms can no longer meet the complex demands of situational awareness 
reconstruction, trust building, and efficient collaboration in autonomous driving scenarios. Therefore, 
designing intelligent and adaptive HMI systems to achieve human-vehicle collaborative 
decision-making and smooth control authority transfer has become a core issue for ensuring the safety 
and user experience of autonomous driving. 

2. HMI System Architecture and Interaction Framework Design for Autonomous Driving 

The HMI system for L4-level autonomous driving needs to establish a multi-level perception–
decision–execution closed loop, with its core architecture consisting of the environmental perception 
layer, user state understanding layer, interaction decision-making layer, and multimodal execution layer. 
The environmental perception layer integrates LiDAR point clouds, camera images, millimeter-wave 
radar data, and V2X information to construct a 360-degree dynamic environmental model around the 
vehicle. The user state understanding layer incorporates driver-facing DMS cameras, steering wheel 
grip sensors, microphone arrays, and bioelectrodes to capture in real time the driver’s eye movement 
trajectory, head posture, voice commands, and physiological signals [2]. 

The interaction decision-making layer, as the core of the system, adopts a hierarchical 
reinforcement learning framework. The high-level policy determines the current interaction mode 
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based on the environmental risk level and the driver’s cognitive state, while the low-level policy 
dynamically generates specific interaction content and timing. The system’s state space S includes 
environmental risk factors Er∈R5(such as time to collision, TTC, road curvature, weather visibility, 
etc.), driver state factors Ds∈R4 (such as attention dispersion index, physiological arousal level, fatigue 
level), and vehicle state Vs∈R3(speed, acceleration, steering angle). The action space A includes 
interaction modality selection, information abstraction level, and presentation timing.The reward 
function is designed as: 

R(s,a)=w1⋅SA(s')+w2⋅(1-CL(s'))+w3⋅TTR(s')-w4⋅Ec                   (1) 

In Equation 1, SArepresents situational awareness, reflecting the driver’s understanding of the 
current driving environment and vehicle state; CL represents cognitive load, indicating the mental 
burden on the driver when processing information; TTR represents the predicted takeover reaction 
time, i.e., the estimated time from when the driver receives a takeover request to actually taking control 
of the vehicle;Ecrepresents interaction energy consumption, referring to the energy consumed by the 
system when performing interaction operations. The weight coefficients are optimized through inverse 
reinforcement learning to ensure that the reward function accurately reflects the system’s prioritization 
of different indicators. (Table 1) 

Table 1 Correspondence between HMI Interaction Modes and Trigger Conditions 
Environmental Risk 
Level 

Driver State Preferred Interaction Mode Information 
Abstraction Level 

Haptic Feedback 
Intensity 

Low risk High alertness / 
active monitoring 

Visual summary + auditory 
status prompt 

Low (icon-based) Weak vibration 

Medium risk Moderate attention / 
mild distraction 

Highlighted visual prompt 
+ voice alert 

Medium 
(semantic brief) 

Moderate pulse 

High risk Low alertness / deep 
distraction 

Full-modal alert + steering 
wheel vibration 

High (detailed 
instructions) 

Strong continuous 
vibration 

Emergency takeover 
request 

Any state Multi-channel redundant 
alert + forced intervention 

 Highest 
(action-oriented) 

Maximum intensity 

3. Multimodal Perception and Intention Understanding Technology 

Accurate recognition of driver intention is a prerequisite for achieving proactive interaction. In this 
study, a driver state recognition model is constructed based on the fusion of multi-source heterogeneous 
data. Eye tracking employs an infrared camera with a sampling rate of 250 Hz to extract features such 
as fixation point sequence, saccade velocity, and pupil diameter change rate [3]. A spatio-temporal 
graph convolutional network (ST-GCN) is used to model the dynamics of eye behavior: 

Fgaze=σ�W*concat[Xt,Xt-Δt,⋯,Xt-nΔt]+b�      (2) 

In Equation 2, Xt  represents the eye movement feature vector at time t, W  denotes the 
convolution kernel weights,b is the bias term, and σ is the activation function. This formula is used to 
obtain the eye movement features Fgaze. 

Physiological signals collected include EEG, ECG, and skin conductance response. EEG focuses on 
the frontal lobe θ wave to parietal lobe α wave power ratio to assess cognitive load; ECG extracts the 
RMSSD indicator of heart rate variability to reflect psychological stress. A multimodal Transformer 
fusion model is employed: 

Attention(Q,K,V)=softmax �QKT

�dk
�V       (3) 

Z=LayerNorm(FFN(Attention(Fgaze,Fbio,Fposture)))                   (4) 

In Equations 3 and 4,Q , K, and V represent the query, key, and value matrices, respectively; dk 
is the dimension of the key vector; FFN denotes the feedforward neural network;LayerNorm 
represents the layer normalization operation. The output driver state Ds∈R4vector includes attention 
level, cognitive load index, emotional valence, and fatigue level. 

To improve the model’s accuracy and robustness, denoising, normalization, and other preprocessing 
operations are performed on eye movement data and physiological signals during the data 
preprocessing stage. For outliers in eye movement data, statistical-based methods are used for detection 
and correction; for baseline drift in physiological signals, filtering algorithms are applied to eliminate it. 
During model training, cross-validation is employed to ensure the model maintains good performance 
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across different datasets. Verified by extensive experimental data, this multimodal fusion model 
achieves over 90% accuracy in recognizing driver states, providing a reliable basis for subsequent 
interaction decision-making. 

4. Cognitive Load Optimization and Information Presentation Strategy 

To avoid information overload, a cognitive load quantification model needs to be established. Dual 
calibration is performed using the NASA-TLX subjective evaluation and the objective indicator of 
pupil diameter change rate. The cognitive load index is defined as: 

CLI=α⋅ ΔPD
PDbaseline

+β⋅∑ wi
3
i=1 TLXi       (5) 

In Equation 5,ΔPD represents the standard deviation of pupil diameter changes; PDbaseline is the 
baseline pupil diameter; TLXi are the scores for the mental demand, temporal demand, and effort 
dimensions respectively; αand βare weighting coefficients;wi denotes the weights of each TLX 
dimension, calibrated through experimental data. 

Based on the CLI, the information flow is dynamically adjusted: when CLI > 0.65, an information 
filtering mechanism is activated, presenting only critical navigation and safety information to reduce 
unnecessary distractions for the driver; when 0.4 < CLI ≤ 0.65, key routes are projected via AR-HUD, 
allowing the driver to access driving-related information more intuitively; when CLI ≤ 0.4, information 
about surrounding points of interest can be provided to enrich the driver’s travel experience. Visual 
coding follows the ISO 2575 standard, using color semantics: red indicates immediate action, yellow 
indicates warning, and green indicates normal status (Table 2). 

Table 2 Multi-Channel Information Encoding Specifications 
Information Type Visual Channel Auditory Channel Haptic Channel Presentation Duration 
Navigation 
Instructions 

Arrow + distance 
overlay 

3-tone prompt sound None or slight single 
vibration  

≤ 2 seconds 

Forward Collision 
Warning 

Red flashing 
frame 

Urgent beep (850 Hz) High-intensity 
continuous vibration 

Until danger is cleared 

Lane Departure Yellow border 
flashing 

Medium-frequency 
prompt (600 Hz) 

Single-side seat 
vibration 

≤ 3 seconds 

System Mode 
Switch 

Status bar color 
gradient 

Voice announcement 
"Autonomous Driving 
Activated" 

Double pulse vibration 1.5 seconds 

In the timing of information presentation, priority is given based on the urgency and importance of 
the information. For urgent and important information, such as forward collision warnings, presentation 
should be prioritized; for non-urgent but important information, such as navigation instructions, 
presentation can occur at appropriate moments. Meanwhile, considering the driver’s visual attention 
allocation, sudden presentation of large amounts of information should be avoided when the driver’s 
gaze is focused on the road ahead to prevent impacting driving safety. Using eye-tracking technology to 
monitor the driver’s fixation points in real time, the information presentation time is appropriately 
extended when the driver’s gaze is on key information areas to ensure accurate information acquisition. 

5. Safety Takeover and Collaborative Decision-Making Mechanism 

The takeover process is a core challenge in autonomous driving HMI design. A takeover timing 
optimization model based on the Markov Decision Process is proposed. Takeover readiness is defined 
as: 

Rtakeover= 1

1+e-(k1⋅TTC-1+k2⋅Daware-k3⋅Ccomplex)
      (6) 

In Equation 6,TTC represents time to collision,Daware is the driver’s situational awareness score, 
Ccomplex denotes road complexity, k1、k2and k3is a model parameter obtained through experimental 
data fitting. 

Takeover guidance strategy is established as follows: When Rtakeover>0.8 occurs, an emergency 
takeover protocol is triggered, during which the system issues a strong takeover request to the driver 
through multiple channels and prepares for forced intervention; when 0.6<Rtakeover≤0.8 occurs, a 
level-3 progressive warning is initiated, gradually increasing the intensity of information prompts to 
guide the driver to prepare for takeover; when Rtakeover≤0.6 occurs, only a status prompt is given to 
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inform the driver of the current vehicle and environmental conditions. Dynamic time window 
adjustment is adopted: 

Tlead= max �Tmin, Tbase
1+γ⋅(1-Daware)

�       (7) 

In Equation 7, Tbase is the baseline guidance time (experimentally calibrated as 6.3 seconds), Tmin 
is the minimum guidance time, γ is the awareness decay coefficient, and Daware is the driver’s 
situational awareness score. 

At the collaborative decision-making layer, a hybrid reinforcement intelligence framework is 
designed. When the system confidence exceeds 95%, decisions are executed automatically without 
driver intervention; when confidence is between 80% and 95%, suggested plans are proposed for driver 
confirmation, allowing the driver to decide whether to adopt them based on their judgment; when 
confidence is below 80%, control is handed over and manual decision-making is prompted to ensure 
driving safety. The confidence calculation model is: 

Csys=1-∏ (N
i=1 1-pi⋅wi)       (8) 

In Equation 8, pi represents the confidence of each perception module; wi is the dynamic weight, 
adjusted according to the performance of each perception module and the complexity of the current 
environment; N denotes the number of perception modules. 

To verify the effectiveness of the safety takeover and collaborative decision-making mechanisms, 
extensive simulation experiments and real-vehicle tests were conducted. In the simulation experiments, 
various complex traffic scenarios such as sudden obstacles and adverse weather conditions were set up 
to test the system’s takeover performance and collaborative decision-making effectiveness under 
different situations. Experimental results show that the mechanism can quickly and accurately make 
decisions in various scenarios, effectively shortening takeover reaction time and improving driving 
safety. In the real-vehicle tests, multiple drivers were invited to participate, and their operational data 
and subjective evaluations in different takeover scenarios were collected, further validating the 
mechanism’s practicality and reliability [4]. 

6. Experimental Validation and Performance Analysis 

A testing environment was established based on the CARLA simulation platform and a real-vehicle 
modification platform. The CARLA simulation platform can simulate various complex traffic scenarios 
and road conditions, providing rich test cases for the experiments; the real-vehicle modification 
platform conducts tests in real road environments to ensure the authenticity and reliability of the 
experimental results. Thirty-two participants (equal numbers of males and females, with driving 
experience over three years) were recruited to test takeover performance in simulated urban road 
scenarios. Six typical takeover scenarios were designed: sudden braking of the vehicle ahead, 
pedestrian crossing, lane change in construction zones, system failure, adverse weather, and V2X 
emergency messages. 

Table 3 Comparison of Key Indicators before and after HMI Optimization (n=32) 
Performance Indicator Traditional 

HMI 
This Design 
HMI 

Improvement Significance 
(p-value) 

Average Takeover Reaction Time (ms) 3,812 2,183 -42.7% <0.001 
Takeover Operation Accuracy 76.4% 93.8% +17.4% 0.002 
Situational Understanding Accuracy 72.1% 91.3% +19.2% <0.001 
NASA-TLX Total Score 68.3 42.7 -37.5% 0.001 
User Satisfaction Score 5.8/10 8.7/10 +50.0% <0.001 

As shown in Table 3, physiological data analysis shows that the optimized HMI reduced drivers’ 
peak skin conductance response during takeover by 31.2%, indicating a significant decrease in stress 
response; heart rate variability increased by 27.5%, demonstrating a more stable psychological state. 
Eye-tracking heatmap analysis confirms that the new design increased fixation concentration on key 
information areas to 89%, improving visual search efficiency by approximately 40%, enabling drivers 
to acquire critical information faster and more accurately. 

Data collected from real-vehicle road tests in high-speed scenarios show that at a speed of 80 km/h, 
the system can complete the entire process from driver state assessment to control handover within 3.2 
seconds, meeting the time constraints for emergency operations specified by ISO 26262. In-depth 
analysis of the experimental data reveals that the designed HMI outperforms traditional HMI across 
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different scenarios. In emergency situations, such as sudden braking of the vehicle ahead and 
pedestrian crossing, the reduction in average takeover reaction time is more pronounced, which is 
crucial for preventing traffic accidents. Meanwhile, drivers reported high satisfaction with the designed 
HMI, considering it easy to operate and clear in information presentation, effectively reducing driving 
workload. 

7. Conclusion 

This study addresses the human-machine interaction challenges of L4-level autonomous vehicles by 
proposing an advanced HMI architecture that integrates multimodal perception, cognitive load 
optimization, and reinforcement learning-based decision-making. By constructing a driver state 
recognition Transformer model, a dynamic takeover readiness evaluation algorithm, and multi-channel 
information encoding specifications, the human-machine collaboration efficiency is significantly 
improved. Experimental data validate the superiority of this design in shortening takeover reaction time, 
enhancing situational understanding accuracy, and reducing cognitive load. The research outcomes 
provide key technical support to overcome the bottlenecks in autonomous driving deployment, with 
future work aiming to deepen interaction allocation among multiple passengers. This technical 
framework has applied for multiple patents and completed testing on prototype vehicles for automotive 
manufacturers, establishing a new benchmark in human factors engineering design for intelligent 
driving and bearing great significance for promoting the commercialization of autonomous driving. 
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