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Abstract: Based on the CES model by Arrow et al., this paper incorporates the hypothesis of induced 

innovation, takes household and firm behavior as subjects, and analyzes the effects of biased technical 

progress on factor shares with endogenous growth. The results show that, if substitution elasticity s 

more than 1, the factor-augmenting model generates endogenous growth; if saving rate is constant, 

and technical progress s Harrod neutral, there is a saddle path, capital share remains constant and 

technical progress is biased to capital; if savings rate is not a constant, nor technical progress Harrod 

neutral, then there is still a saddle path, but equilibrium point is half equilibrium point, and the bias 

turns towards labor. It is also found that when innovation possibility frontier is symmetric, capital 

share is less than 1/2, and long run factor shares are consistent with the theory. 
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1. Introduction 

The distribution of factor shares is an issue worth noting in primary distribution, however in the 

past decades, it has been ignored by classical economists mainly because long run factor shares should 

remain constant [1], long run substitution elasticity between capital and labor equals 1 and factor shares 

don’t change[2]. In reality, capital share tends to grow in developed countries with various degrees 

[3][4][5]; China as a developing country, its long run capital share also tends to grow [6][7][8][9]; this 

trend is especially obvious after 2000 for developing nations [10], and attracts attention from the 

academia. Many scholars represented by Acemoglu, after correcting neo-classical assumptions, 

pointing out that technical progress bias is a significant perspective for explaining factor shares change. 

Acemogluproved in many papers that if capital and labor are complementary (substitution elasticity is 

less than 1), capital-augmenting technical progress reduces capital utilization, but increases capital 

share, reduces labor share; while labor-augmenting progress leads to unchanging factor shares in the 

long term[11][12][13]. 

Regrettably, the current literature on the effects almost all uses neo-classical framework, ignoring 

two important problems, namely, the effects of technical progress on factor shares with endogenous 

growth and the long run dynamic changes in technical progress and factor shares. By using the CES 

model , Arrow et al. correct the definition of diminishing capital revenue, and assumed that capital 

stock approaches infinity and that marginal product of capital have a lower boundary (Inada condition 

fails), then this model generated endogenous growth (it is related with factor substitution elasticity)[14]. 

The induced innovation hypothesis by Kennedy was then introduced based on the factor-augmenting 

model, combined with conditions for endogenous growth, the relationship between capital and labor 

was fixed (substitutable, totally substitutable or complementary), then it can be explained that how 

technical bias effects the direction of factor shares[15]. Besides, the factor-augmenting model with the 

induced innovation hypothesis can be used to study the transfer dynamics between capital share and 

capital growth speed. Therefore, the model could analyze the effects of technical bias on factor shares 

well.  

Next, this paper will use the factor-augmenting model with the induced innovation hypothesis to 

study the effects of technical progress on factor shares. The following is structured as: Part Two from 

household and firm behavior studies the conditions for endogenous growth, and analyzes the transfer 

dynamics between the average product of capital at market equilibrium and consumption-capital stock 

ratio; based on innovation possibility frontier assumption, Part Three examines the transfer dynamics 
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between capital share and capital growth speed; the final part is the conclusion 

2. Technical bias and endogenous growth 

Households and firms are the entities of economic activities. Firms provide products to serve the 

society, pay wage to labor and rent to capital; households offer labor for wage, take interests from 

assets, purchase products for consumption and accumulate assets for savings. Therefore, the 

endogenous growth model is constructed through studying household and firm behavior. 

2.1 Household behavior analysis 

Assuming the utility function of each household is: 

1
( )
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1
( )

1

n tc
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
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
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                                                           (1) 

in the equation, c is per capita consumption for adults, 


time preference rate for utility, 0  , a 

positive  means that the later to obtain utility, the lower the value; 0  , its derivation was the 

substitution elasticity of any two consumption goods; n  denotes the growth rate of the expanding 

household scale expected by current period adults. Certainly, household consumption was restrained by 

household income: 

( )da dt r n a w c   
                                                           (2) 

where, a  is per capita assets, r  interest rate, w  wage rate. This function denotes that per capita 

assets increase with per capita income ( )r n a w  , and decreases with per capita consumption c . To 

prevent households from borrowing endlessly, households are restricted by the borrowing condition:  

0
lim{ ( ) exp[ [ ( ) ] ]} 0
t

a t r v n dv



   

                                             (3) 

Utility function optimization satisfies the following Euler equation: (1 ) ( )c c r 


   。 And 

transversality condition is: 

0
lim{ ( ) exp[ [ ( ) ] ]} 0
t

a t r v n dv



   

                                             (4) 

2.2 Firm behavior analysis 

This paper adopts the production function with capital-augmenting and labor-augmenting technical 

progress:  

( , )t t t tY F A K B L
                                             (5) 

Assuming the factor-augmenting CES model is: 

 

1

[ ( ) (1 )( ) ]Y a AK a BL    
                                             (6) 

among which, A is capital-augmenting technical progress index, B labor-augmenting technical 

progress index; K is capital, L labor, Y output; (0,1)a  denotes the distribution parameter of the 

importance of these two factors, [( 1) ]    the substitution parameter of the inter-substitutability of 

these two factors, the substitution elasticity between capital and labor is 1 (1 )   . 

Let (11) be divided by BL , we obtain the following per capita expression (where, ( )k K BL ): 

1[ ( ) (1 )]y a Ak a   
                                             (7) 



     Academic Journal of Business & Management 

ISSN 2616-5902 Vol. 3, Issue 2: 74-85, DOI: 10.25236/AJBM.2021.030214 
 

Published by Francis Academic Press, UK 

-76- 

Marginal product and average product of capital are respectively: 

1

( ) [ (1 ) ]f k aA aA a k


   



   
                                           (8) 

1( ) [ (1 ) ]f k k aA a k    
                                           (9) 

From (8)and (9), we get ( )f k , ( )f k k are both positive, and all  are decreasing with k . 

This paper considers the case of 0 1  ( 1  ), namely, there is a high substitutability between L  

and K . The limits of capital marginal product and average product are respectively: 

1

ˆ ˆ
lim ( ) lim[ ( ) ] 0
k k

f k f k k Aa 

 

   
                                                  (10) 

ˆ ˆ0 0
lim ( ) lim[ ( ) ]
k k

f k f k k
 

   
                                                  (11) 

Therefore, when k  approaches infinity, marginal product and average product both approach 

positive constants, not zero, the key Inada condition fails, this factor-augmenting CES model generates 

endogenous growth. But when 0   ( 1  ), there is a low substitutability between L  and K , capital 

marginal product and average product have the following limits 

ˆ ˆ
lim ( ) lim[ ( ) ] 0
k k

f k f k k
 

  
, 

1

ˆ ˆ0 0
lim ( ) lim[ ( ) ]
k k

f k f k k Aa 

 

    
 

Now, the key Inada condition is met, this factor-augmenting CES model doesn’t generate 

endogenous growth.. 

Therefore, the first key conclusion of this paper is that when factor substitution elasticity 1  , 

the CES model has endogenous growth. With this, we move to the transfer dynamics analysis in market 

equilibrium study. 

Profit maximization for firms requires capital marginal product equal to rent price R r   , here, 

marginal product is a constant 
1Aa 

, that is, 

1( )f k r Aa    
                                                  (12) 

Assume
1( ) x tA t e , 

2( ) x tB t e  (where 1 0x  , 2 0x  , and both are constants). Because wage 

w  equals labor marginal product, k  value must meet (12): 

2 1( )
[ ( ) ( )]

x x tf k k f k e w   
                                                  (13) 

The equation guarantees that whichever value BL  takes, firms’ profit is zero. 

2.3 Market equilibrium 

Assuming the economy was a closed one, then there was 0a k K L 
.Inserting 0a k

, 
2 1( )

0

x x tk k e  and (12) (13)into (2), we get: 

2 1( ) ( )k k f k k c k x x n 


     
                                                  (14) 

2 11 [ ( ) ( )]c c f k x x   


    
                                                  (15) 

among which, transversality condition becomes: 

2 1
0

lim{ exp( [ ( ) ( ) ] )} 0
t

t
k f k x x n dv



      
                                                  (16) 



     Academic Journal of Business & Management 

ISSN 2616-5902 Vol. 3, Issue 2: 74-85, DOI: 10.25236/AJBM.2021.030214 
 

Published by Francis Academic Press, UK 

-77- 

When k  , the limit of 
ˆ( )f k  is 

1Aa 
, so, model (6) has endogenous growth, steady state 

growth rates of c , k , 
y

 are determined by: 

* 1

2 11 [ ( )]Aa x x        
                          (17) 

When
1

2 1( )Aa x x       , * 0  (assuming n  , it means 
1

2 1( )Aa n x x      , if not, when 

ĉ  remains constant, the utility would be boundless). 

2.4 Transfer dynamics analysis 

To seek the transfer dynamics of model (6) through establishing a phase diagram of ( , )k c  space is 

futile, because when 
* 0  , k  and c  will always grow. In order to use phase diagram, we need 

variables constant in the steady state by transformation. Examine the evolution of average product of 

capital (marked as ( )z f k k ) and consumption-capital stock ratio (marked as c k  ). Note, z is a 

state variable,  is a control variable. Different from k  and c , z and   in the steady state approach 

constants. Using (14) and (15), taking the derivation of z  and  , after some algebra treatment, we get 

the dynamic equations of z  and 


, expressed as: 

2 1( ) [ ( ) ]z z z D z x x n  


     
                                                  (18) 

( )[( ) 1] ( ) ( )D z D z D    


     
                                                (19) 

where, 1D Aa  , ( )( 1)D n          . Because ( ) /f k k  can’t be lower than D , analysis here is fit for 

z D . Steady state values are z D  ,    . 

where, 1D Aa  , ( )( 1)D n          . Because ( ) /f k k  can’t be lower than D , analysis here is fit for 

z D . Steady state values are z D  ,    . 

To analyze the dynamic paths of model (6), we construct the phase diagram of space ( , )z  , 

illustrated in Figure 1, equations 0z


  and 0


  divide the first quadrant into four areas, marked as I, 

II, III and IV. If 1   , in areas I and IV, average product of capital z  is less than z . 
*z z D   is 

corresponding to the condition 0z


 , therefore, when z D and 2 1( )D x x n      , 0z


 . Thereby, in 

areas I and IV, average product of capital increases. In contrast, in areas II and III, average product of 

capital decreases. In areas III and IV, consumption-capital ratio   is larger than that at the curve 

0


 , therefore, the ratio decreases. But in areas I and II, the ratio increases. 

 

Figure. 1  The transfer dynamics in the CES model (0 1  , 1   ) 

Now, think about the transfer dynamics from the initial position (0)z D . In Figure 1, along the 
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initial value (0) , z  and   monotonically decrease in the transfer process. The image of 0


  is 

determined by ( ) ( )[( ) 1]z D D z D         . When z  value is in the low position, this curve slopes 

downward, and reaches the minimum at 
1

[(1 ) ]z D     . When 1    and z monotonically decreases, 

the minimum value is at the left of D ; when 1   , the opposite happens. Because when 0 1   

and 1  , this condition holds. When z  approaches infinity, the slope of the image 0


  approaches 1. 

The curve crosses z D  under 2 1( )D x x n    
. 

Therefore, when the substitution elasticity between capital and labor 1  , if effective per capita 

capital k  approaches infinity, marginal product and average product both approach positive constants, 

then the CES production function generates endogenous growth. Within the framework, the CES model 

characterizes a long run growth, and convergence in the transfer process, as follows: with the 

increasing effective per capita capital k , average product of capital z  approaches D , while effective 

per capita capital growth rate k k


 approaches zero. It is worth noting that for any substitution elasticity 

 , with the increase of k , k k


 approaches zero.  

Capital share of model (11) is controlled by the following: 

0( ) ( ) ( (1 ) ) ( (1 ) )k f k f k A A k A A B k                 
 

in which, 0k K L . For any substitution elasticity  , if 0A  , then the above equation equals zero; 

if 0B  , In the case of factor substitution elasticity 1   ( 0 1  ), if 0A   and 0B  , then with 

the increasing per capita 0k , capital share approaches 1, labor share reduces to 0. Therefore, in the case 

of factor substitution elasticity 1  , labor-augmenting function generates endogenous growth, and it is 

important to study the effects of technical bias on factor shares. Next, consider these effects when 1  . 

3. The effects of technical bias on factor shares with endogenous growth 

3.1 Technical progress speed, direction and innovation possibility frontier 

Technical progress characterizes its speed and direction through factor shares analysis. Using model 

(5), according to Diamond[20], technical speed S  and direction D  are defined as: 

K L
t

K L

K F t L F t
S F F

KF LF

    
 


, ( ) K LK L K

L K L

F FF F F
D

t F F F

 


  


 

According to David and Klundert [16] and Sato [17], factor substitution elasticity is: 

( ) ( )

( ) ( )

K L

K L K L KL

F Fd K L K L

d F F F F FF
    

                                                  (20) 

By model (10), define the capital share as Ka
, namely 

K
K

F K
a

F


                                                  (21) 

The capital share change rate1 is  

ˆ ˆ ˆˆ
K Ka F K F  

                                                  (22) 

Assume the speed Â  and speed B̂  of factor-augmenting technical progress are endogenous 

variables. According to their definitions and (5)/ (20), we get (for more details, see Appendix 1): 

                                                 

1 Assume the change rate of any variable x  is x̂ x x


 . 
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1ˆ ˆˆ ˆ( )K
K

a
F A A B




  

 

ˆˆ ˆ ˆ( )K
L

a
F B A B


  

                           （23) 

Combined with the direction definition, we have  

1 ˆˆ( )D B A





 

                                                  (24) 

Therefore, when 1   (labor and capital are substitutable) and ˆ ˆA B  ( ˆ ˆA B ), technical progress 

benefits capital (labor); when 1   (labor and capital are complementary) and ˆ ˆA B  ( ˆ ˆA B ), 
technical progress benefits labor (capital); when 1  , technical progress is Hicks neutral. This is 

consistent with the direction of technical progress (Antras, 2004; Klump, 2007)[18][19]. 

By (5) and the speed definition, we obtain 

ˆ ˆ(1 )K KS a A a B  
                                                  (25) 

S  and D  are functions of Ka , that is, ( )KS S a , ( )KD D a . 

According to the induced innovation hypothesis proposed by Kennedy[15], we could assume that 

there is innovation possibility frontier for technical progress, if Â  remains constant, firms will 

maximize B̂ . All firms choose instantaneous velocity 
ˆ ˆ( , )A B  to realize the maximization of output 

( , )F AK BL  growth rate. As in Figure 1, innovation possibility frontier is a strict concave function, at its 

any point, Â  and B̂  may reach the maximum, but not beyond the curve. Based on the above 

assumptions, we observe assumptions, we observe 

2ˆ ˆ ˆˆ ˆ ˆ{( , ) | ( ), , }A B B A A a B b   
                                                  (26) 

where, (0) 0  , ˆ( ) 0A  , ˆ( ) 0A  ; a  and b are upper limits of Â  and B̂ , both are constants. 

Restricted by (26), firms will choose the optimal ˆ ˆ( , )A B  to maximize technical progress speed S . 

ˆmax

ˆ ˆ(1 ) ( )K K
A

S a A a A  
                                                  (27) 

To obtain the derivation of Â , and set it to zero, we have: 

ˆ( ) (1 )K KA a a    
                                                  (28) 

where, 0 1Ka  . As in Figure 2, S curve crosses innovation possibility frontier at (1 )K Ka a  . 

 

Figure. 2  Innovation possibility frontier 

   According to the above analysis, Â  is a function of Ka , and ˆ( ) 0A  , using (28), we could 

attain : 

2ˆ ˆ ˆ( ) 1 [(1 ) ( )] 0K K KA a A a a A       
                                                  (29) 
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   Similarly, B̂  is a function of Ka , and ˆ( ) 0A  , using (26) (28), we could attain : 

ˆ ˆˆ ˆ( ) ( ) 0K KB a B a A A      
                                                  (30) 

   Therefore, when technical progress can speed S  reaching the maximum, with the increasing 

capital share Ka , technical progress is biased towards capital-augmenting technology Â . 

Consequently, because Â  and B̂  are both continuous functions of Ka
 (

0 1Ka 
), when it could 

reach the maximum, there are 

ˆ ( ) 0KA a 
, 0

ˆlim ( )
K

K
a

A a


 
, 1

ˆlim ( )
K

K
a

A a a



                                                 (31) 

ˆ ( ) 0KB a 
, 0

ˆlim ( )
K

K
a

B a b



, 1

ˆlim ( )
K

K
a

B a


 
                                                 (32) 

Next, analyzing the transfer dynamics of capital share and capital growth speed based on the above 

consideration. 

3.2 Transfer dynamics 

Assuming the function is a two-sector model, savings equals investment S I , savings is s , capital 

is homogeneous, and there is no depreciation. Therefore, the net increase of capital stock at one point 

equals gross investment: ( )K t I S sY


   .  Thereby, the net increasing is a function of gross output. 

Assuming K  is an exogenous variable and takes the decreasing exponential form:  

( ) ( )vtK t e F t



 or 

ˆ ( ) ( ) ( )vtK t e F t K t 
                        (33) 

among which, 0 1  , 0v  , (0) 0K  . 

Using (5), the change rate of gross output is (for more details in Appendix 2): 

ˆˆ ˆ ˆ ˆ ˆ ˆ( ) (1 )( ) (1 )K K K KF a K A a L B a K a L S        
                        (34) 

Inserting the above equation, (23) and (25) into (21), (where the growth speed of labor is n ), we 

obtain: 

1 1ˆˆ ˆ ˆ(1 )[ ( ) ( ) ( )] (1 )[ ( )]K K K K K Ka a a B a A a K n a D K n
 

 

  
                               (35) 

According to (33), the change rate of K̂  is:     

ˆ ˆ ˆ ˆK K v F K


                           (36) 

Inserting (34) into the above equation, we have 

ˆˆ ˆ ˆ ˆ ˆ(1 )[ ( ) ( ) ( )] (1 )( )
1 1

K
K K K K

K K

a v
K K a B a A a K n S v a K n

a a



          
 

                       (37) 

Then, (35) and (37) forms a set of equations. Restricted by (31), (32), consider whether or not the 

equilibrium conditions of (35) and (37) are consistent with the steady state. In steady state, ˆ ˆ 0K K  , 

K Ka a   and 0 1Ka   .  

Meanwhile, there are 
1 ˆ( ) ( )KD a K n




 
  , ˆ( ) (1 )( )K KS a v a K n      ,equal to the following 

equations: 

ˆˆ ˆ( ) ( )K KK B a A a n    
                                                  (38) 

ˆˆ ˆ( ) ( )
1 1

K
K K

K K

a v
K B a A a n

a a


  

 
   

 
                                                  (39) 
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According to (33), (38) and (39) meet the conditions: 

ˆ( )KA a v 
                                                  (40) 

Taking the above equation and 
ˆˆ ( )B A  into (38), we have 

ˆ ( )K v v n   
                                                  (41) 

Therefore, the equilibrium conditions of (35)and (37) are consistent with the steady state. When 

0Ka


  and ˆ 0K


 , we seek its transfer dynamics through establishing the phase diagram of space 

ˆ( , )Ka K , as in Figure 3. When 0Ka


 , we get 

1
ˆˆ ˆ( ) ( ) ( )K K KK B a A a n z a   

                                                  (42) 

Taking the derivation of time, we obtain 

1
ˆˆ( ) ( ) ( )K K Kz a B a A a   

                                                  (43) 

According to (36) and (37), when 0 1Ka  , there are 1 ( ) 0Kz a  , 
1

0
lim ( )
K

K
a

z a


 
, 

1
1

lim ( )
K

K
a

z a


 
. So, 

when 0Ka  , the corresponding trace of 0Ka


  approaches  ; when 1Ka  , the corresponding 

trace of 0Ka


  approaches  . In phase space 
ˆ( , )Ka K , equations 0Ka



  and ˆ 0K


  divide the first 

quadrant into four areas, marked as I, II, III and IV. If 1  , in areas I and II, capital share Ka
 is more 

than Ka 

. K Ka a   corresponds to the condition 0Ka


 , therefore, when K Ka a  , 0Ka


 . Thereby, in 

areasIand IV, capital share decreases. 

Similarly, when ˆ 0K


 , there is 

2
ˆˆ ˆ( ) ( ) ( )

1 1

K
K K K

K K

a v
K B a A a n z a

a a
    

 
                                             (44) 

Taking the derivation of time, we have 

2 2 2

ˆ ˆ( ) ( )ˆˆ( ) ( ) ( )
1 (1 ) (1 )

K K K
K K K

K K K

a A a v A a v
z a B a A a

a a a

      
  

                                         (45) 

In the steady state, if 0v  , then 
ˆ( ) 0KA a   , 

ˆ ˆ( )KK B a n   . From Figure 3, it can be observed that 

the trace of ˆ 0K


  is in the first quadrant, first decreasing then increasing. In areas of II and III, the 

corresponding capital growth speed 
ˆ( )KA a  is larger than that at ˆ 0K



 . Therefore, capital growth speed 

will slow down; in contrast, in areas of I and IV, capital growth speed will increase. By (44), there is 

2
ˆ( ) ( ) 0K Kz a B a n   

                                                  (46) 

Subtracting (44) from (42), we have 

1 2

1 ˆ( ) ( ) ( )
1

K K K

K

z a z a A a
a

  


                                                  (47) 

The above equation demonstrates that, when K Ka a  , the trace of ˆ 0K


  is lower than that of 

0Ka


 ; when K Ka a  , the trace of ˆ 0K


  is higher than that of 0Ka


 . Correspondingly, combining 

(36) and (37), we know that, when 0Ka  , the trace of ˆ 0K


  begins with b n . 
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Figure. 3 The saddle paths of two traces when 0v  , 1   

As in Figure 3, when 0v   (or s  is a constant) and factor substitution elasticity 1  , if technical 

progress is Harold neutral, then there is the optimal path between capital share and capital growth 

speed, and the path is a saddle one, with equilibrium point 
ˆ( , )Ka K 

 the saddle point. Simultaneously, 

by the definition of technical progress direction, when 1  , 0v  , then technical progress is biased 

towards capital. 

Next, consider the case of 0v   (or s  is not a constant), then, the trace of ˆ 0K


  moves downward, 

the initial value is b n v   (as in Figure 4). According to (44), if 
ˆ( )KA a v , there is 

1 2

ˆ( )
( ) ( )

1

K
K K

K

v A a
z a z a

a


 


                                                  (48) 

If 
ˆ( )KA a v , there is one Ka 

 to make 
ˆ( )KA a v  , and the traces of 0Ka



  and ˆ 0K


  cross at Ka 

. 

Meanwhile, by the definition of technical progress direction, when 1  , 
ˆ( )KA a v  , then technical 

progress is biased towards capital. By (41), if two traces cross at the first quadrant, then it meets the 

following: ( ) 0v v n    。 

As in Figure 4, under the condition of ( )v v n  , two traces cross at the fourth quadrant, this point 

doesn’t have any economic meaning. In that case, there may be a quasi-equilibrium point 
0 0ˆ( , )Ka K , 

determined by the crossing point of the trace of 0Ka


  and horizontal axis Ka . Similar to Figure 3, when 

factor substitution 1  , equilibrium point 
0 0ˆ( , )Ka K  is the saddle point, and meets: 

0ˆ 0K  , 
0 0ˆˆ( ) ( ) 0K KB a A a n   . By the definition of technical progress direction, when 1  , ( )v v n  , then 

technical progress is biased towards labor. 

 

Figure. 4 The saddle paths of two traces when 0v  , 1   

When 0ˆ 0K  , 
0 0ˆˆ( ) ( ) 0K KB a A a n   , and within the innovation possibility frontier, when 

0 ( )v v n   , if 
ˆˆ ( )K KF A a v  , 

ˆ ˆ( ) ( )L KF B a v  , then interest rate and wage rate increase with the 
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increasing v . Therefore, when 0v  , interest rate is not a constant, thereby the whole economic 

system is enabled to move along the corresponding path. If innovation possibility frontier is symmetric, 

then when ˆ 0K n    (
ˆ ˆ( ) ( )K KA a B a  ), there is 1 2Ka   ; similarly, when ˆ 0K n   , then 1 2Ka   . 

Therefore, when v  is relatively small, 
ˆ ( ) 0K n v v     , within the innovation possibility frontier, capital 

share will be less than 1 2 , namely, long run factor shares distribution is consistent with the theory.  

Therefore, under the innovation possibility frontier, when the speed of factor-augmenting technical 

progress reaches the maximum, technical progress is more biased towards capital, with the increasing 

capital share; when the substitution elasticity of labor and capital is larger than 1, and savings rate is a 

constant, if technical progress is Harold neutral, then there is the optimal path between capital share 

and capital growth speed, and it takes the saddle path, with capital share remaining constant, and 

technical progress biased towards capital; when the substitution elasticity of labor and capital is larger 

than 1, and savings rate is not a constant, if technical progress is not Harold neutral, then there still is 

the optimal path between capital share and capital growth speed, and it takes the saddle path, but with 

equilibrium point being the half equilibrium point, and zero capital growth speed, and technical 

progress biased towards labor; furthermore, if innovation possibility frontier is symmetric, capital share 

will be less than1/2,  and long run factor shares distribution is consistent with the theory. 

4. Conclusion 

This paper first studies the conditions for the CES production function to generate endogenous 

growth: when the substitution elasticity between capital and labor 1  , if effective per capita capital 

k  approaches infinity, marginal product and average product both approach positive constants, then 

the CES production function generates endogenous growth. Under this framework, the CES model 

characterizes the long run growth, and convergence during the transfer process, more specifically, with 

the increasing effective per capita capital k , average product of capital z  approaches a constant D , 

while effective per capita capital growth rate k k


 approaches zero. Note that for any substitution 

elasticity , with the increasing k , k k


 approaches zero. Meanwhile, when 1  , if 0A   and 0B  , 

then with the infinite increasing per capita capital 0k , capital share approaches 1, labor share 0. 

Therefore, in the case of 1  , the factor-augmenting model generates endogenous growth, and it 

embodies significance to study the effects of technical progress on factor shares. 

After meeting the endogenous growth conditions, we consider the transfer dynamics of factor 

shares caused by technical progress bias. Results show that, first, within the innovation possibility 

frontier, firms pursue the maximization of technical progress speed, with the increasing capital share 

Ka , technical progress is more biased towards capital-augmenting technical progress; secondly, when 

the substitution elasticity between capital and labor is larger than 1, and savings rate is a constant, if 

technical progress is Harold neutral, then there is the optimal path between capital share and capital 

growth speed, it takes the saddle path, and technical progress is more biased towards capital; thirdly, 

when the substitution elasticity between capital and labor is larger than 1, and savings rate is not a 

constant, if technical progress is not Harold neutral, then there is still the optimal path between capital 

share and capital growth speed, and it takes the saddle path, but with equilibrium point being the half 

equilibrium point, and zero capital growth speed, and technical progress biased towards labor; 

furthermore, if innovation possibility frontier is symmetric, capital share will be less than 1 2 ,  and long 

run factor shares distribution is consistent with the theory. 

From the tests of the model, it can be observed that in the factor-augmenting CES model, if capital-

augmenting technical progress is larger than 0 and labor-augmenting technical progress is larger than 0, 

then with the infinite increasing per capita capital, capital share approaches 1, labor 0. If capital is 

narrowly defined as buildings and equipment, then the meaning of the model will not match the data; 

but if human capital is incorporated into the definition of capital, then the meaning of the model will be 

more reasonable, that is, with the development of economy, the initial labor share of gross output will 

reduce to 0.  
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Appendix 1 

Because of ( , )Y F AK BL , there are  

  1KF AF , 1K
K

F K AF K
a

F F
  , 21 K

BF L
a

F
                (1a) 

               1 2 1 2

12 12

K L

KL

F F AF BF F F

FF FAF B FF
                                           (2a) 

According to the definition of technical progress speed: 

        1
11 12 1 11 12 1

1

1ˆ ˆ ˆ ˆˆ ˆ( ) [( ) ( ) ]K t t t

F
F A A F KA F LB F A F AK A F BL B F

t F


       


       (3a) 

Because there is no difference between AK  and BL  for 
1F , 

11 12F AK F BL  , and we get  

   12 2 12

1 1 2

1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( )K
K t t

F BL F BL FF a
F A A B A A B A A B

F FF F 

 
                (4a) 

Similarly, we get ˆˆ ˆ ˆ( )K
L

a
F B A B


   .  
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Appendix 2 

According to ( , )Y F AK BL , change rate is created as follows: 

( ) ( )

( ) ( )

F F AK K K F AK A A

F AK K Y K AK K Y A

  

   
       
   

 

           
( ) ( )

( ) ( )

F BL L L F BL B B

BL L Y L BL L Y B

 

   
        
   

                 (1b) 

To get the derivations of AK  and BL  for the both sides of the equation respectively, we have  

 
( )

F F
K

K AK

 
 

 
, 

( )

F F
A

A AK

 
 

 
, 

( )

F F
L

L BL

 
 

 
, 

( )

F F
B

B BL

 
 

 
     (2b) 

By the above equations, there are 

     
( )

F K F A F AK

K Y A Y AK Y

  
    

  
, 

( )

F L F B F BL

L Y B Y BL Y

  
    

  
            (3b) 

Because capital share K
K

F K
a

F


, labor share (1 )Ka , inserting (3b) into (1b), we obtain 

             ( ) (1 )( )K K

F K A L B
a a

F K A L B

    

                                                           (4b) 


