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Abstract: To address the issues of severe video quality degradation caused by high-concentration coal 

dust in confined underground coal mine spaces, which leads to difficulties in behavior detection and 

discriminative feature learning, this study proposes an improved CRR-YOLO algorithm based on 

YOLOv11n. To tackle the challenge of learning discriminative features, a cross-modal scene-object 

matching module, CM-SOM, is designed. By introducing a Vision-Language Model (VLM), it establishes 

cross-modal interaction between visual and linguistic modalities, enhancing the feature space distinction 

between targets and backgrounds, thereby improving the semantic discrimination capability of the target 

detection model in scenarios lacking discriminative features. In the backbone network, a context prior-

guided feature extraction network, RepVIT, is embedded. It constructs a dynamic contextual information 

flow through gated dynamic spatial aggregation to enhance the model, achieving dual guidance of 

features and weights, and strengthening the model's global semantic understanding and contextual 

dependency modeling of the scene. Furthermore, a feature fusion network with a recalibration 

mechanism, Re-FPN, is designed. Through a selective boundary aggregation module and a lightweight 

feature enhancement module, it enables complementary enhancement of boundary details and high-level 

semantic information via a bidirectional interaction mechanism, optimizing multi-scale feature fusion. 

Experiments on the dedicated underground coal mine behavior dataset DsLMF+ demonstrate that CRR-

YOLO achieves 84.3% mAP@0.5 and 79.1% F1-score, outperforming several advanced models. With 

only 2.4M parameters and 6.2 GFLOPs, it achieves an inference speed of 253 FPS, striking a favorable 

balance among accuracy, speed, and complexity, and exhibits strong potential for practical application. 

Keywords: Behavior Detection, Real-Time Monitoring, Cross-Modal Guidance, Yolov11n 

1. Introduction  

With the expansion of coal mining areas and the deepening of mining operations, the increasing 

danger of the working environment poses threats to personnel life safety and health [1]. The underground 

coal mine environment is renowned for its extreme complexity: confined spatial structures, severely 

uneven lighting, and particularly the high-concentration coal dust generated by operations such as 

excavation and transportation, which constitutes one of the most severe challenges for underground 

behavior detection. This dust environment severely attenuates light propagation, resulting in low image 

contrast and blurred details, causing a sharp decline in the performance of traditional computer vision 

algorithms. Statistics indicate that the root cause of the vast majority of underground safety accidents is 

directly related to unsafe human behaviors (such as climbing, falling, and leaning). Therefore, achieving 

accurate personnel behavior detection under low imaging quality conditions has become a core technical 

bottleneck for improving coal mine safety levels and realizing proactive risk warning.  

Regarding behavior detection, researchers have proposed various methods in recent years to improve 

the accuracy and robustness of underground personnel behavior detection. For instance, Wang Yu et al. 

[2] proposed a behavior recognition method based on multi-modal feature fusion, achieving high 

recognition accuracy on public datasets by fusing RGB modality and skeleton modality features, 

effectively utilizing the complementarity of appearance and motion information. Luo Jinjin et al. [3] 

addressed real-time requirements by introducing efficient multi-scale convolution and an optimized loss 
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function based on YOLOv8n, designing the YOLOv8-ECW model, which improved detection accuracy 

while maintaining speed. Chen Wei et al. [4] improved YOLOv8s by introducing an efficient multi-scale 

attention mechanism and lightweight modules, enhancing the ability to extract multi-pose, multi-scale 

features of miners and reducing model complexity. 

However, when dealing with the core challenge of high-concentration, non-uniform dust and fog 

underground, existing methods still exhibit significant adaptability shortcomings, mainly manifested in 

three aspects: Firstly, regarding image dehazing, most existing behavior detection models lack built-in 

effective image preprocessing or dehazing modules, directly extracting features from degraded images, 

leading to poor model robustness against dust interference. Secondly, regarding feature fusion, whether 

multi-modal or cross-scale fusion, there is a lack of recalibration mechanisms for features degraded by 

dust and fog, failing to effectively distinguish and enhance useful information while suppressing dust 

interference. Finally, regarding real-time detection, while complex models achieve some accuracy 

improvement, they struggle to meet the stringent real-time requirements for high-frame-rate processing 

in underground monitoring, whereas lightweight models show insufficient ability to maintain accuracy 

under dust conditions. 

Addressing the aforementioned issues, this paper proposes the CRR-YOLO model, integrating image 

dehazing and feature recalibration, aiming to achieve high-precision and high-efficiency personnel 

behavior detection in dust and fog scenarios.  

2. YOLOv11 Algorithm 

YOLOv11[5] is the latest version in the YOLO series, making important improvements to the 

backbone network, neck network, and detection head based on YOLOv8, and has become one of the 

best-performing models in the current object detection field. Precisely because of its outstanding 

performance, we chose it as the starting point for this research. 

Overall, YOLOv11 follows a three-stage architecture: the backbone network extracts image features, 

the neck network enhances these features, and the detection head performs the final prediction task. C3K2 

adopts a structure similar to the C2f module in YOLOv8 in shallow networks, improving information 

flow efficiency by splitting feature maps and using multiple small convolution kernels. C2PSA introduces 

a multi-head attention mechanism, enabling the network to focus more intelligently on key areas of the 

image. Furthermore, YOLOv11 retains the SPPF module, continuing to leverage the advantages of multi-

scale feature fusion. In the detection head part, YOLOv11 incorporates depthwise separable convolution 

(DWConv [6]), reducing both the parameter count and computational load, making the model more 

lightweight. 

However, when the YOLOv11 model is directly applied to the specific scenario of underground coal 

mines, it reveals several limitations under dust interference, directly affecting the detection accuracy of 

personnel behaviors: Feature extraction failure: Dust and fog cause image blurring and contrast reduction, 

while the limited receptive field and global modeling capability of YOLOv11's C3K2 module make it 

difficult to extract effective features, leading to missed detections and false positives. Localization 

accuracy deficiency: Dust and fog blur personnel contours, and the FPN structure of YOLOv11 is 

insufficiently sensitive to degraded edges; its unidirectional fusion path struggles to restore fine 

boundaries, affecting localization accuracy. Computational inefficiency: Attention modules like C2PSA 

are effective on clear images but are easily distracted by background noise in low-quality dusty images, 

wasting computational resources and hindering real-time inference speed. 

To address these problems, the CRR-YOLO model makes systematic improvements: Introducing the 

CM-SOM dehazing module: Through dual-frequency domain fusion and residual channel prior, it 

achieves global suppression of dust and local detail restoration, improving input image quality. 

Reconstructing the RepVIT feature extraction network: Establishes a dynamic contextual information 

flow, enhancing the model's global semantic understanding capability in blurred scenes. Designing the 

Re-FPN feature fusion network: Employs a bidirectional interaction and feature enhancement mechanism 

to achieve complementary fusion of cross-level features, improving boundary localization accuracy. 

CRR-YOLO performs systematic optimization from image preprocessing and feature extraction to 

feature fusion. Its structure is shown in Figure 1, effectively addressing detection challenges in dust and 

fog scenarios. 
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Figure 1: CRR-YOLO network structure. 

3. Method 

3.1. Cross-Modal Scene-Object Matching (CM-SOM) 

To break the semantic similarity between camouflaged objects and the background, relying solely on 

image features often provides insufficient semantic information to separate them. To address this, Cross-

Modal Scene-Object Matching is proposed. It leverages text features generated by a pre-trained Vision-

Language Model (VLM) [7] to introduce richer, deeper semantic information, thereby overcoming visual 

limitations. The specific operations are as follows: 

To capture the spatial dependencies of image features, the feature map 𝑀̅  is transformed into a 

feature sequence 𝑆 = {𝑠1, 𝑠2,···, 𝑠𝑁}, where 𝑁 = ℎ × 𝑤  and each 𝑠𝑖 ∈ 𝑅
𝑐  represents a local image 

feature. Spatial information is injected using positional encodings 𝑃 = {𝑝1, 𝑝2,···, 𝑝𝑁}, resulting in a 

position-aware feature sequence. This sequence is then fed into an encoder EN(∙) for feature enhancement, 

yielding the enhanced feature sequence S̅: 

𝑆̅ = EN(𝑆 + 𝑃)                               (1) 

Simultaneously, for the camouflage image I, it is input into a VLM to obtain corresponding textual 

descriptions for the target and background: 

𝑇𝑏𝑔, 𝑇𝑜𝑏 = VLM(𝐼)                             (2) 

The VLM employs BLIP-2 (Bootstrapping Language-Image Pre-Training) [8] to generate semantic 

descriptions for the background and object within the image. For the background description, the image 

is paired with the query prompt 𝑇𝑞𝑏: "What is the environment in the picture?". For the target description, 

the specific prompt 𝑇𝑞𝑜: "What is the camouflaged object in the picture?" is used to guide the model to 

focus on potential target regions. The VLM process is: 

 𝑍𝑏𝑔, 𝑍𝑜𝑏 = 𝑊𝑝 ∙ 𝑆𝑒𝑙𝑓(Cross(𝑄𝑠, Vit(𝐼))||BERT(𝑇𝑞𝑏, 𝑇𝑞𝑜))            (3) 

The image I is first processed by a frozen ViT encoder to extract visual features, which interact with 

learnable queries 𝑄𝑠  via a cross-attention mechanism. The resulting visual features are then 

concatenated with the encoded query prompts from BERT [9], followed by further fusion through a self-

attention mechanism. This fused feature is subsequently multiplied by the linear projection weight  𝑊𝑝 

to obtain the joint features 𝑍𝑏𝑔 and 𝑍𝑜𝑏, respectively. These joint features are then fed into the L-layer 

decoder of the language model. For clarity, only 𝑍𝑏𝑔 is described in detail below as the data input: 
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𝑧𝑡−1 = 𝑍𝑡−1
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                    (4) 

In Eq. (4), CATT(·) denotes causal self-attention, FFN(·) is the feed-forward network, 𝑍1:𝑡−1
𝑙−1  

represents historical hidden states, 𝑍𝑡−1
𝐿  is the hidden state of the last layer, and t is the time step. The 

probability P over all words in the vocabulary is calculated from 𝑧𝑡−1. 

𝑃(𝜔𝑡|𝜔1:𝑡−1) = Softmax(𝑊𝑧𝑧𝑡−1 + 𝑏𝑧) ∈ 𝑅
|𝐷|              (5) 

In Eq. (5), 𝑊𝑧 is an output weight matrix that maps the hidden state to the vocabulary space, 𝑏𝑧 is 

a bias term, and |𝐷| is the vocabulary size. The probabilities of the top-k words in P are normalized, 

and the generated word 𝑤𝑡 is selected based on the result. This process is repeated until an end token is 

generated, yielding the final background textual description 𝑇𝑏𝑔. 𝑇𝑜𝑏 is obtained through an identical 

process using 𝑍𝑜𝑏. 

Textual features for the background 𝐸𝑏𝑔 and the target 𝐸𝑜𝑏 are generated via a text encoder TE(·), 

i.e.: 

𝐸𝑏𝑔, 𝐸𝑜𝑏 = TE(𝑇𝑏𝑔, 𝑇𝑜𝑏)                         (6) 

To reduce inter-modal discrepancies, the enhanced feature sequence 𝑆̅ and the textual features 𝐸𝑏𝑔, 

𝐸𝑜𝑏 are projected into a common space. Let the projection function be P(·), then the projected features 

are denoted as: 

𝑆̅, 𝐸𝑏𝑔̅̅ ̅̅ ̅, 𝐸𝑜𝑏̅̅ ̅̅̅ = 𝑃(𝑆̅, 𝐸𝑏𝑔, 𝐸𝑜𝑏)                        (7) 

The projected image feature sequence is then matched with the background and target textual features 

respectively via a cross-attention mechanism, producing background-enhanced features 𝑆𝑏𝑔̅̅ ̅̅  and target-

enhanced features 𝑆𝑜𝑏̅̅ ̅̅ . These subsequently interact with 𝑆̅  to yield the final cross-modal feature 

sequence: 

 𝑆̅ = 𝑆̅ − Softmax (
(𝑄𝐸𝐸𝑏𝑔̅̅ ̅̅ ̅̅ )(𝐾𝑆𝑆)̅̅ ̅

𝑇

√𝑑𝑘
)𝑉𝑆𝑆̅ + Softmax (

(𝑄𝐸𝐸𝑜𝑏̅̅ ̅̅ ̅̅ )(𝐾𝑆𝑆)̅̅ ̅
𝑇

√𝑑𝑘
)𝑉𝑆𝑆̅        (8) 

Finally, 𝑆̅ is fed into a set of learnable classifiers to obtain the topN elements, constructing a query 

sequence 𝑞̃ = {𝑞1, ⋯ , 𝑞𝑛, ⋯ , 𝑞𝑁} . 𝑆̃  and 𝑞 ̃  then interact within a decoder DE(·) to produce the 

ultimate cross-modal query sequence: 

𝑆𝑞̃ = DE(𝑆̃, 𝑞̃)                              (9) 

By integrating semantic descriptions of the scene and objects with visual features, this approach better 

captures the underlying distinctions between target and background, enhancing the separability for 

anomaly detection. This cross-modal method not only makes anomalous behavioral targets more salient 

but also redefines the dimensions of behavior detection by incorporating more precise linguistic 

semantics, thereby effectively overcoming detection bottlenecks caused by visual feature similarities. 

3.2. Reparameterized Vision Transformer (RepVIT) 

The underground behavior detection task imposes stringent demands on real-time performance. 

However, the substantial computational footprint of the YOLOv11 model's Backbone can hinder 

detection speed. The original YOLOv11 backbone is composed of convolutional layers, C3k2 modules, 

SPPF modules, and CBS modules. Feature extraction through these successive convolutional layers not 

only requires intensive computation but also inevitably introduces memory redundancy, adversely 

affecting real-time processing. In contrast, RepVIT employs a unique decoupled convolution design that 

simplifies the internal network architecture, making it more suitable for tasks with high real-time 

requirements. Therefore, this paper adopts the RepVIT neural network architecture to address these 

challenges. 
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Figure 2: Structure of RepVIT. 

As illustrated in Figure 2, the RepVIT structure incorporates both self-attention and multi-head 

attention mechanisms, which enhances its capability for image recognition tasks. It improves model 

efficiency and performance while simultaneously reducing the parameter count without compromising 

predictive accuracy. Although the original YOLOv11 backbone utilizes a series of convolutional and 

deconvolutional layers alongside residual connections and bottleneck structures, the kernel size of its 

initial feature extraction convolutional layer is halved compared to its predecessor, resulting in a further 

reduction of the receptive field. RepVIT, however, leverages re-parameterization techniques to optimize 

the model structure. This improves parameter operational efficiency and subsequently boosts detection 

speed. Experimental results confirm that this technique not only preserves the model's predictive power 

but also reduces its parameter volume. Furthermore, RepVIT utilizes the attention mechanism from 

Transformers [10] to process image data, enabling it to better capture long-range dependencies within 

images and thereby compensate for the global information loss associated with the C2f module. RepVIT 

also exhibits a hierarchical feature extraction characteristic, employing a multi-level structure to process 

information at different scales within each layer. 

3.3. Recalibrate Feature Pyramid Network(Re-FPN) 

During the feature fusion stage of behavior detection tasks, the semantic differences between features 

at different CNN[11] layers are exacerbated by the dust and fog environment, often making effective 

fusion between deep and shallow features difficult.  

The Re-FPN proposed in this paper addresses this issue through its internal Selective Boundary 

Aggregation (SBA) module. 

The SBA module abandons the traditional direct fusion of deep and shallow features, adopting two 

independent RC modules to enhance shallow and deep features separately before fusion. The structure 

of the SBA module is shown in Figure 3. This design has dual advantages: on one hand, shallow features 

can supplement the boundary detail information lost in deep features; on the other hand, high-level 

semantic information in deep features can enhance the abstract representation capability of shallow 

features. Then, the outputs of the two RC modules are finally fused via a 3×3 convolution. 

The SBA module employs a bidirectional fusion strategy: in the shallow-to-deep fusion path, 

boundary information 𝐹𝑏 ∈ R
𝐻

4
×
𝑊

4
×32

 from shallow features is injected into the deep features 𝐹𝑠 ∈

R
𝐻

8
×
𝑊

8
×32

 to enhance their spatial details; in the other path, high-level semantic information 𝐹𝑠  from 

deep features is fused into the shallow features 𝐹𝑏, serving to suppress noise. Finally, the enhanced 

features from the two paths are concatenated along the channel dimension and further fused through a 

3×3 convolution to improve semantic consistency among features at different levels. This process is 

formulated as follows: 
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𝑍 = 𝐶3×3(𝐶𝑜𝑛𝑐𝑎𝑡(𝑃𝐴𝑈(𝐹
𝑠, 𝐹𝑏), 𝑃𝐴𝑈(𝐹𝑏, 𝐹𝑠)))              (10) 

Where  𝐶3×3(∙) represents the 3×3 convolution including batch normalization and ReLU activation, 

𝐶𝑜𝑛𝑐𝑎𝑡(∙) represents the concatenation operation along the channel dimension, and the final output is 

𝑍 ∈ 𝑅
𝐻

4
×
𝑊

4
×32

. 

Conv

3×3
BN ReLU

RC

RC

Concat OutPut

Fb
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Figure 3: SBA module. 

Each RC module internally contains a Pooling Aggregation Unit (PAU) for further reconstruction and 

refinement of features. The RC module structure is shown in Figure 4. 
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Figure 4: RC module 

The calculation process of the PAU module is as follows: 

The PAU operation in the SBA module uses learnable weight maps 𝑊𝜃(𝑇1)  and 𝑊𝜑(𝑇2)  to 

adaptively select which semantic information and spatial details from the two paths are most effective 

for behavior detection in the current dust scene, thereby achieving fusion: 

𝑇1
′ = 𝑊𝜃(𝑇1), 𝑇2

′ = 𝑊𝜑(𝑇2)                        (11) 

𝑃𝐴𝑈(𝑇1, 𝑇2) = 𝑇1
′⊙𝑇1 + 𝑇2

′⊙𝑇2⊙ (⊝ (𝑇1
′)) + 𝑇1            (12) 

where 𝑇1 and 𝑇2 are the input features. 𝑇1 and 𝑇2 have their channel numbers compressed to 32 

via 𝑊1 and 𝑊2, respectively, obtaining mapped features 𝑇1
′ and 𝑇2

′. The symbol ⊙ denotes element-

wise multiplication, and the operation of subtracting 𝑇1
′ from 𝑇2

′ refines the rough initial estimate into 

a more accurate and complete prediction map. Throughout the process, 1×1 convolution is used as the 

linear mapping operation. 

4. Experimental Analysis 

4.1. Dataset and Evaluation Metrics 

We evaluated the proposed model on two datasets, including the publicly available DsLMF+ dataset 

24 and a self-built Worker Action dataset in Coal Dust Scenes (WAICDS). The DsLMF+ dataset includes 

a total of 24,709 miner behavior images from 67 different scenes, with 19,767 for training and 4,942 for 

validation. There are 8 image categories: 5 safe behaviors: operate, sit, stand, stoop, and walk; and 3 

unsafe behaviors: climb, fall, lean_against, with a total of 28,289 annotations. 

To verify the dust removal effect of the improved model, we propose the WAICDS dataset, using coal 

mine video surveillance for image collection. We captured 500 images of mine personnel behavior during 

periods of high coal dust concentration in coal mine operation scenes and selected 700 high dust/fog 

images from the DsLMF+ dataset, totaling 1,200 images. The dataset contains 6 categories: walk, climb, 

fall, operate, lean_against, and data augmentation was performed via random rotation and brightness 

adjustment. The dataset was divided into training and validation sets in an 8:2 ratio. The effectiveness of 

the model is verified by monitoring mine video surveillance. Training set annotations include class labels, 

bounding box center coordinates (x, y), and width and height measurements. Examples from the 

WAICDS dataset are shown in Figure 5. 
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Figure 5: Example of WAICDS dataset 

To accurately evaluate object detection performance, four fundamental metrics were used: Precision 

(P), Recall (R), F1-score (F1), and mean Average Precision (mAP) [12, 13]. 

4.2. Experimental Environment Configuration 

Several crucial training environments are involved in this study, including the need for CUDA and 

PyTorch support. Due to the large number of images in the dataset and the need to improve model training 

accuracy, YOLOv11 utilizes GPU and CUDA to accelerate computation, while PyTorch is used as the 

tool and library to build and train the model. The experiment used a Nikon D850 camera to capture some 

images, with lighting conditions ranging from 5-100 Lux. Dust/fog concentration was monitored via a 

particle counter, ranging from 50-500 μg/m³. Labeling was completed using the LabelImg tool, with 

cross-validation ensuring consistency. 

4.3. Ablation Studies 

To verify the effectiveness of the three proposed improvement strategies, ablation experiments were 

performed on the baseline model. For consistency and convenience in performance evaluation, these 

ablation experiments were conducted on the DsLMF+ dataset. Experiment 1 introduced CM-SOM (C) 

alone. Experiment 2 introduced RepVIT (R) alone. Experiment 3 introduced Re-FPN (F) alone. 

Experiment 4 added RepVIT to Experiment 1. Experiment 5 added Re-FPN to Experiment 1. Experiment 

6 added Re-FPN to Experiment 2. The results are shown in Table 1. 

Table 1: Ablation experiment. 

Model C R F P% R% mAP@0.5/% FPS/ 

(f·s-1) 

Parameters/M GFLOPs 

YOLOv11n - - - 78.1 75.7 79.9 188 2.6 6.3 

1 √ - - 77.5 75.2 81.6 180 3.2 6.8 

2 - √ - 81.5 76.0 81.9 195 2.3 5.9 

3 - - √ 81.1 78.7 82.0 200 2.8 6.3 

4 √ √ - 83.5 72.6 82.5 231 2.5 6.1 

5 √ - √ 73.9 80.8 82.5 228 2.7 6.5 

6 - √ √ 81.4 76.2 82.6 244 2.7 6.4 

7 √ √ √ 85.4 74.6 84.3 253 2.4 6.2 

Based on the ablation results, the following conclusions can be drawn: Model 1, introducing the CM-

SOM structure alone, improves average precision by 1.7%, but precision, recall, and real-time 

performance all decrease, indicating that the CM-SOM structure can effectively improve model detection 

accuracy. However, due to its multi-layer convolutional structure increasing parameters, real-time 

performance is reduced. Model 2, introducing the RepVIT structure alone, improves precision, recall, 

and average precision, indicating that RepVIT can effectively bridge the semantic gap between different 

layers during feature extraction and shallow-deep feature fusion. Model 3, introducing Re-FPN alone, 

also improves precision, recall, and average precision, especially recall increased by 3%, representing 

enhanced model adaptability and alleviated missed/false negative rates. In Model 4, the introduction of 

CM-SOM and RepVIT increased mAP50 from 79.9% to 82.5%, showing their key role in improving 

model accuracy, especially in complex scenes. Model 5, with the further integration of Re-FPN on top 

of Model 1, further improved mAP50 to 82.5%. Model 6, based on Model 2, further optimizes detection 

performance by introducing Re-FPN, maintaining mAP50 at 82.6%, enhancing focus on key features, 

and improving small target detection. Model 7 is the final model. The fusion of the three innovative 

schemes yields significant performance gains, with precision, recall, average precision, and real-time 

performance reaching 85.4%, 74.6%, 84.3%, and 253 FPS respectively. Moreover, parameter volume 

and complexity are reduced, ultimately achieving a good balance between accuracy and efficiency. 
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4.4. Comparative Experiments 

To verify the behavior detection capability of the proposed model for coal dust scenes, it was 

compared with currently popular object detection algorithm models. Under the same experimental 

environment, using the same configuration and parameters, detection experiments were conducted on the 

DsLMF+ dataset. Comparative models included YOLOv5s, YOLOv7-tiny, Yolov8n, YOLOv9-tiny, 

YOLOv10n, RTDETR-18, and the latest coal mine underground miner behavior detection methods 

proposed by Liu [14] and Ni [15] (represented by Model-1 and Model-2, respectively). Comparative 

experimental results are shown in Table 2. 

Table 2: Performance comparison of different detection algorithms on the DsLMF+ dataset. 

Models F1-Score% mAP@0.5/% FPS(f·s-1) Parameters/M FLOPS/G 

YOLOv5s 74.3 77.1 187 7.8 18.8 

YOLOv7-tiny 73.4 77.5 190 6.0 13.3 

YOLOv8n 73.1 77.2 202 3.1 6.8 

YOLOv9s 76.8 82.5 194 61.9 22.1 

YOLOv10n 73.6 78.1 200 2.7 6.5 

YOLOv11n 76.5 79.9 188 2.6 6.3 

RTDETR-18 78.6 82.6 249 20.0 57 

Model-1 75.7 79.3 221 3.4 9.8 

Model-2 75.0 78.4 211 3.3 8.6 

CRR-YOLO 79.1 84.3 253 2.4 6.2 

According to the comparison results shown in Table 2, the CRR-YOLO algorithm outperforms other 

YOLO variants in terms of detection accuracy and computational efficiency. Specifically, CRR-YOLO 

achieves 84.3% mAP@0.5 and 79.1% F1-Score, surpassing most lightweight models and even some 

large models. For example, CRR-YOLO's mAP@0.5 significantly exceeds that of YOLOv5s (77.1%), 

YOLOv7-tiny (77.5%), YOLOv8n (77.2%), and is even higher than YOLOv9s (82.5%). Compared to 

newer models like YOLOv10n (78.1%), YOLOv11n (79.9%), and RTDETR-18 (82.6%), CRR-YOLO 

still maintains higher detection accuracy. In terms of F1-Score, it also outperforms the second-highest 

RTDETR-18 (78.6%) and the third-highest YOLOv9s (76.8%), indicating that CRR-YOLO achieves a 

good balance between precision and recall and possesses robustness in handling more challenging 

detection thresholds. In terms of lightweight design, CRR-YOLO also has advantages, requiring only 

2.4M parameters and 6.2 GFLOPs, which is substantially lower than the recent model RTDETR-18's 

20M parameters and 57 GFLOPs, and also lower than the lightest version in YOLOv11, YOLOv11n 

(2.6M parameters, 6.3 GFLOPs). Compared with the latest behavior detection models, CRR-YOLO's 

mAP@0.5 reaches 84.3%, significantly higher than Model-1 (79.3%) and Model-2 (78.4%), representing 

an improvement of 5-6 percentage points. This highlights the importance of the synergistic design of 

front-end image enhancement (dehazing) and back-end feature optimization (recalibration). CRR-YOLO 

leads with an inference speed of 253 FPS, approximately 15-20% faster than Model-1 (221 FPS) and 

Model-2 (211 FPS), fully meeting the real-time monitoring requirements underground. The customized 

network structure for specific scenarios shows clear advantages over general models. CRR-YOLO 

requires only 2.4M parameters and 6.2 GFLOPs, representing approximately 30% fewer parameters and 

35% lower computational complexity compared to the comparative models, demonstrating excellent 

lightweight characteristics. These results indicate the effectiveness of CRR-YOLO in achieving the 

optimal trade-off between accuracy and efficiency. Its lightweight design, combined with its strong 

detection capability, especially for small and difficult targets, makes it a promising candidate for real-

time deployment in scenarios such as underground coal mines with dust and fog. 

5. Conclusion 

(1) This paper proposes CRR-YOLO, a personnel behavior detection model for underground dust and 

fog scenarios. The model achieves an F1-Score of 79.1% and a mean Average Precision of 84.3%, 

representing a 4.4% improvement over the baseline model. The model has 2.4M parameters and a 

detection speed of 253 FPS. This model can rapidly and accurately detect the behaviors of underground 

workers in high coal dust scenes. 

(2) An image dehazing network named CM-SOM for underground dust environments is proposed. It 

achieves efficient global-local synergistic modeling and detail recovery by fusing Fourier convolution 

and contextual priors. A feature extraction network named RepVIT is designed to enhance the global 
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semantic perception and contextual understanding capability of the backbone network under blurred 

detail conditions. Re-FPN is constructed. Through its core Selective Boundary Aggregation and Feature 

Enhancement modules, the cross-layer feature fusion process is optimized, effectively alleviating the 

semantic gap and detail loss problems. 

(3) Extensive experiments on self-built and public datasets demonstrate that the proposed CRR-

YOLO model outperforms current mainstream methods in terms of detection accuracy, robustness, and 

computational efficiency, providing a reliable technical pathway for the practical deployment of 

underground intelligent surveillance systems. 
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