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Abstract: To address the issues of severe video quality degradation caused by high-concentration coal
dust in confined underground coal mine spaces, which leads to difficulties in behavior detection and
discriminative feature learning, this study proposes an improved CRR-YOLO algorithm based on
YOLOv11n. To tackle the challenge of learning discriminative features, a cross-modal scene-object
matching module, CM-SOM, is designed. By introducing a Vision-Language Model (VLM), it establishes
cross-modal interaction between visual and linguistic modalities, enhancing the feature space distinction
between targets and backgrounds, thereby improving the semantic discrimination capability of the target
detection model in scenarios lacking discriminative features. In the backbone network, a context prior-
guided feature extraction network, RepVIT, is embedded. It constructs a dynamic contextual information
flow through gated dynamic spatial aggregation to enhance the model, achieving dual guidance of
features and weights, and strengthening the model's global semantic understanding and contextual
dependency modeling of the scene. Furthermore, a feature fusion network with a recalibration
mechanism, Re-FPN, is designed. Through a selective boundary aggregation module and a lightweight
feature enhancement module, it enables complementary enhancement of boundary details and high-level
semantic information via a bidirectional interaction mechanism, optimizing multi-scale feature fusion.
Experiments on the dedicated underground coal mine behavior dataset DsSLMF+ demonstrate that CRR-
YOLO achieves 84.3% mAP@0.5 and 79.1% F1-score, outperforming several advanced models. With
only 2.4M parameters and 6.2 GFLOPs, it achieves an inference speed of 253 FPS, striking a favorable
balance among accuracy, speed, and complexity, and exhibits strong potential for practical application.
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1. Introduction

With the expansion of coal mining areas and the deepening of mining operations, the increasing
danger of the working environment poses threats to personnel life safety and health [1]. The underground
coal mine environment is renowned for its extreme complexity: confined spatial structures, severely
uneven lighting, and particularly the high-concentration coal dust generated by operations such as
excavation and transportation, which constitutes one of the most severe challenges for underground
behavior detection. This dust environment severely attenuates light propagation, resulting in low image
contrast and blurred details, causing a sharp decline in the performance of traditional computer vision
algorithms. Statistics indicate that the root cause of the vast majority of underground safety accidents is
directly related to unsafe human behaviors (such as climbing, falling, and leaning). Therefore, achieving
accurate personnel behavior detection under low imaging quality conditions has become a core technical
bottleneck for improving coal mine safety levels and realizing proactive risk warning.

Regarding behavior detection, researchers have proposed various methods in recent years to improve
the accuracy and robustness of underground personnel behavior detection. For instance, Wang Yu et al.
[2] proposed a behavior recognition method based on multi-modal feature fusion, achieving high
recognition accuracy on public datasets by fusing RGB modality and skeleton modality features,
effectively utilizing the complementarity of appearance and motion information. Luo Jinjin et al. [3]
addressed real-time requirements by introducing efficient multi-scale convolution and an optimized loss

Published by Francis Academic Press, UK
-62-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 8, Issue 11: 62-70, DOI: 10.25236/AJCIS.2025.081107

function based on YOLOV8n, designing the YOLOV8-ECW model, which improved detection accuracy
while maintaining speed. Chen Wei et al. [4] improved YOLOVSs by introducing an efficient multi-scale
attention mechanism and lightweight modules, enhancing the ability to extract multi-pose, multi-scale
features of miners and reducing model complexity.

However, when dealing with the core challenge of high-concentration, non-uniform dust and fog
underground, existing methods still exhibit significant adaptability shortcomings, mainly manifested in
three aspects: Firstly, regarding image dehazing, most existing behavior detection models lack built-in
effective image preprocessing or dehazing modules, directly extracting features from degraded images,
leading to poor model robustness against dust interference. Secondly, regarding feature fusion, whether
multi-modal or cross-scale fusion, there is a lack of recalibration mechanisms for features degraded by
dust and fog, failing to effectively distinguish and enhance useful information while suppressing dust
interference. Finally, regarding real-time detection, while complex models achieve some accuracy
improvement, they struggle to meet the stringent real-time requirements for high-frame-rate processing
in underground monitoring, whereas lightweight models show insufficient ability to maintain accuracy
under dust conditions.

Addressing the aforementioned issues, this paper proposes the CRR-YOLO model, integrating image
dehazing and feature recalibration, aiming to achieve high-precision and high-efficiency personnel
behavior detection in dust and fog scenarios.

2. YOLOv11 Algorithm

YOLOV11[5] is the latest version in the YOLO series, making important improvements to the
backbone network, neck network, and detection head based on YOLOVS8, and has become one of the
best-performing models in the current object detection field. Precisely because of its outstanding
performance, we chose it as the starting point for this research.

Overall, YOLOv11 follows a three-stage architecture: the backbone network extracts image features,
the neck network enhances these features, and the detection head performs the final prediction task. C3K2
adopts a structure similar to the C2f module in YOLOVS in shallow networks, improving information
flow efficiency by splitting feature maps and using multiple small convolution kernels. C2PSA introduces
a multi-head attention mechanism, enabling the network to focus more intelligently on key areas of the
image. Furthermore, YOLOV11 retains the SPPF module, continuing to leverage the advantages of multi-
scale feature fusion. In the detection head part, YOLOV11 incorporates depthwise separable convolution
(DWConv [6]), reducing both the parameter count and computational load, making the model more
lightweight.

However, when the YOLOv11 model is directly applied to the specific scenario of underground coal
mines, it reveals several limitations under dust interference, directly affecting the detection accuracy of
personnel behaviors: Feature extraction failure: Dust and fog cause image blurring and contrast reduction,
while the limited receptive field and global modeling capability of YOLOv11's C3K2 module make it
difficult to extract effective features, leading to missed detections and false positives. Localization
accuracy deficiency: Dust and fog blur personnel contours, and the FPN structure of YOLOvV11 is
insufficiently sensitive to degraded edges; its unidirectional fusion path struggles to restore fine
boundaries, affecting localization accuracy. Computational inefficiency: Attention modules like C2PSA
are effective on clear images but are easily distracted by background noise in low-quality dusty images,
wasting computational resources and hindering real-time inference speed.

To address these problems, the CRR-YOLO model makes systematic improvements: Introducing the
CM-SOM dehazing module: Through dual-frequency domain fusion and residual channel prior, it
achieves global suppression of dust and local detail restoration, improving input image quality.
Reconstructing the RepVIT feature extraction network: Establishes a dynamic contextual information
flow, enhancing the model's global semantic understanding capability in blurred scenes. Designing the
Re-FPN feature fusion network: Employs a bidirectional interaction and feature enhancement mechanism
to achieve complementary fusion of cross-level features, improving boundary localization accuracy.
CRR-YOLO performs systematic optimization from image preprocessing and feature extraction to
feature fusion. Its structure is shown in Figure 1, effectively addressing detection challenges in dust and
fog scenarios.
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Figure 1: CRR-YOLO network structure.

3. Method
3.1. Cross-Modal Scene-Object Matching (CM-SOM)

To break the semantic similarity between camouflaged objects and the background, relying solely on
image features often provides insufficient semantic information to separate them. To address this, Cross-
Modal Scene-Object Matching is proposed. It leverages text features generated by a pre-trained Vision-
Language Model (VLM) [7] to introduce richer, deeper semantic information, thereby overcoming visual
limitations. The specific operations are as follows:

To capture the spatial dependencies of image features, the feature map M is transformed into a
feature sequence S = {s;,5,,,Sy}, Where N =h X w and each s; € R represents a local image
feature. Spatial information is injected using positional encodings P = {p,,p,, -, Py}, resulting in a
position-aware feature sequence. This sequence is then fed into an encoder EN(-) for feature enhancement,
yielding the enhanced feature sequence S:

S=EN(S+P) ()

Simultaneously, for the camouflage image I, it is input into a VLM to obtain corresponding textual
descriptions for the target and background:

Tyg: Top = VLM(I) ()

The VLM employs BLIP-2 (Bootstrapping Language-Image Pre-Training) [8] to generate semantic
descriptions for the background and object within the image. For the background description, the image
is paired with the query prompt T,,: "What is the environment in the picture?". For the target description,
the specific prompt Tg,: "What is the camouflaged object in the picture?" is used to guide the model to
focus on potential target regions. The VLM process is:

Zpg: Zop = Wy - Self (Cross(Qs, Vit(1))|IBERT (Tgp, Tgo)) (3)

The image | is first processed by a frozen ViT encoder to extract visual features, which interact with
learnable queries Q, via a cross-attention mechanism. The resulting visual features are then
concatenated with the encoded query prompts from BERT [9], followed by further fusion through a self-
attention mechanism. This fused feature is subsequently multiplied by the linear projection weight 1},
to obtain the joint features Z,, and Z,,, respectively. These joint features are then fed into the L-layer
decoder of the language model. For clarity, only Z,, is described in detail below as the data input:
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(Ae-1 = CATT(ZiZ1, Zpgl|Zi724
Croq = Cross(ZiZ1, Zyg) }
Ziy = FFN(A¢-1,Ce-1)

_ 7L
Zy 4 =Ziq

4)

In Eq. (4), CATT(J denotes causal self-attention, FFN(J is the feed-forward network, z!7%;
represents historical hidden states, Z%_, is the hidden state of the last layer, and t is the time step. The
probability P over all words in the vocabulary is calculated from z,_;.

P(w¢|wye-1) = Softmax(W,z,_; + b,) € RI"! (%)

In Eg. (5), W, is an output weight matrix that maps the hidden state to the vocabulary space, b, is
a bias term, and |D| is the vocabulary size. The probabilities of the top-k words in P are normalized,
and the generated word w; is selected based on the result. This process is repeated until an end token is
generated, yielding the final background textual description T,4. T, is obtained through an identical
process using Z,p.

Textual features for the background E,, and the target E,, are generated via a text encoder TE( ),
i.e.
Ebg: Eob = TE(Tbg' Tob) (6)

To reduce inter-modal discrepancies, the enhanced feature sequence S and the textual features Epg,

E,, are projected into a common space. Let the projection function be P(J, then the projected features
are denoted as:

'S_"E_bg'E_ob = P(.S_', Ebg'Eob) (7)

The projected image feature sequence is then matched with the background and target textual features
respectively via a cross-attention mechanism, producing background-enhanced features S, and target-
enhanced features S,,. These subsequently interact with S to yield the final cross-modal feature
sequence:

s_ & (QEEbg) KsST\ |, & QEEn) KT\ 1, &
§ = § — Softmax (%) VS + Softmax (%i“) VS 8)

Finally, S is fed into a set of learnable classifiers to obtain the topN elements, constructing a query
sequence § = {q1,"*,qn. . qn}. S and q then interact within a decoder DE() to produce the
ultimate cross-modal query sequence:

Sq = DE(S,d) 9)

By integrating semantic descriptions of the scene and objects with visual features, this approach better
captures the underlying distinctions between target and background, enhancing the separability for
anomaly detection. This cross-modal method not only makes anomalous behavioral targets more salient
but also redefines the dimensions of behavior detection by incorporating more precise linguistic
semantics, thereby effectively overcoming detection bottlenecks caused by visual feature similarities.

3.2. Reparameterized Vision Transformer (RepVIT)

The underground behavior detection task imposes stringent demands on real-time performance.
However, the substantial computational footprint of the YOLOv11l model's Backbone can hinder
detection speed. The original YOLOV11 backbone is composed of convolutional layers, C3k2 modules,
SPPF modules, and CBS modules. Feature extraction through these successive convolutional layers not
only requires intensive computation but also inevitably introduces memory redundancy, adversely
affecting real-time processing. In contrast, RepVIT employs a unique decoupled convolution design that
simplifies the internal network architecture, making it more suitable for tasks with high real-time
requirements. Therefore, this paper adopts the RepVIT neural network architecture to address these
challenges.
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Figure 2: Structure of RepVIT.

As illustrated in Figure 2, the RepVIT structure incorporates both self-attention and multi-head
attention mechanisms, which enhances its capability for image recognition tasks. It improves model
efficiency and performance while simultaneously reducing the parameter count without compromising
predictive accuracy. Although the original YOLOvV11 backbone utilizes a series of convolutional and
deconvolutional layers alongside residual connections and bottleneck structures, the kernel size of its
initial feature extraction convolutional layer is halved compared to its predecessor, resulting in a further
reduction of the receptive field. RepVIT, however, leverages re-parameterization techniques to optimize
the model structure. This improves parameter operational efficiency and subsequently boosts detection
speed. Experimental results confirm that this technique not only preserves the model's predictive power
but also reduces its parameter volume. Furthermore, RepVIT utilizes the attention mechanism from
Transformers [10] to process image data, enabling it to better capture long-range dependencies within
images and thereby compensate for the global information loss associated with the C2f module. RepVIT
also exhibits a hierarchical feature extraction characteristic, employing a multi-level structure to process
information at different scales within each layer.

3.3. Recalibrate Feature Pyramid Network(Re-FPN)

During the feature fusion stage of behavior detection tasks, the semantic differences between features
at different CNN[11] layers are exacerbated by the dust and fog environment, often making effective
fusion between deep and shallow features difficult.

The Re-FPN proposed in this paper addresses this issue through its internal Selective Boundary
Aggregation (SBA) module.

The SBA module abandons the traditional direct fusion of deep and shallow features, adopting two
independent RC modules to enhance shallow and deep features separately before fusion. The structure
of the SBA module is shown in Figure 3. This design has dual advantages: on one hand, shallow features
can supplement the boundary detail information lost in deep features; on the other hand, high-level
semantic information in deep features can enhance the abstract representation capability of shallow
features. Then, the outputs of the two RC modules are finally fused via a 3>3 convolution.

The SBA module employs a bidirectional fusion strategy: in the shallow-to-deep fusion path,
H W
boundary information F, € R+*%*3% from shallow features is injected into the deep features F, €

Re¥5%32 to enhance their spatial details; in the other path, high-level semantic information F, from
deep features is fused into the shallow features F,, serving to suppress noise. Finally, the enhanced
features from the two paths are concatenated along the channel dimension and further fused through a
3>3 convolution to improve semantic consistency among features at different levels. This process is
formulated as follows:
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Z = C3x3(Concat(PAU(F®,F?), PAU(F?, F%))) (10)

Where C543(+) represents the 3>3 convolution including batch normalization and ReL U activation,
Concat(-) represents the concatenation operation along the channel dimension, and the final output is

H W
7€ RZXTXBZ,
b
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Concat —» %2:3\/ BN ReLU —>» OutPut
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N RC
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Figure 3: SBA module.

Each RC module internally contains a Pooling Aggregation Unit (PAU) for further reconstruction and
refinement of features. The RC module structure is shown in Figure 4.
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Figure 4: RC module
The calculation process of the PAU module is as follows:

The PAU operation in the SBA module uses learnable weight maps W, (T;) and W,(T,) to

adaptively select which semantic information and spatial details from the two paths are most effective
for behavior detection in the current dust scene, thereby achieving fusion:

T{ = Wo(T1), Tz = Wy (T2) (11)

PAUT,T) =TI OT+T 0T, O (O T))+T (12)

where T, and T, are the input features. T, and T, have their channel numbers compressed to 32
via W; and W,, respectively, obtaining mapped features T; and T,. The symbol © denoteselement-
wise multiplication, and the operation of subtracting T; from T, refines the rough initial estimate into
a more accurate and complete prediction map. Throughout the process, 11 convolution is used as the
linear mapping operation.

4. Experimental Analysis
4.1. Dataset and Evaluation Metrics

We evaluated the proposed model on two datasets, including the publicly available DsLMF+ dataset
24 and a self-built Worker Action dataset in Coal Dust Scenes (WAICDS). The DsLMF+ dataset includes
a total of 24,709 miner behavior images from 67 different scenes, with 19,767 for training and 4,942 for
validation. There are 8 image categories: 5 safe behaviors: operate, sit, stand, stoop, and walk; and 3
unsafe behaviors: climb, fall, lean_against, with a total of 28,289 annotations.

To verify the dust removal effect of the improved model, we propose the WAICDS dataset, using coal
mine video surveillance for image collection. We captured 500 images of mine personnel behavior during
periods of high coal dust concentration in coal mine operation scenes and selected 700 high dust/fog
images from the DsLMF+ dataset, totaling 1,200 images. The dataset contains 6 categories: walk, climb,
fall, operate, lean_against, and data augmentation was performed via random rotation and brightness
adjustment. The dataset was divided into training and validation sets in an 8:2 ratio. The effectiveness of
the model is verified by monitoring mine video surveillance. Training set annotations include class labels,
bounding box center coordinates (x, y), and width and height measurements. Examples from the
WAICDS dataset are shown in Figure 5.
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Figure 5: Example of WAICDS dataset

To accurately evaluate object detection performance, four fundamental metrics were used: Precision
(P), Recall (R), F1-score (F1), and mean Average Precision (mAP) [12, 13].

4.2. Experimental Environment Configuration

Several crucial training environments are involved in this study, including the need for CUDA and
PyTorch support. Due to the large number of images in the dataset and the need to improve model training
accuracy, YOLOv11 utilizes GPU and CUDA to accelerate computation, while PyTorch is used as the
tool and library to build and train the model. The experiment used a Nikon D850 camera to capture some
images, with lighting conditions ranging from 5-100 Lux. Dust/fog concentration was monitored via a
particle counter, ranging from 50-500 pg/m?*. Labeling was completed using the Labellmg tool, with
cross-validation ensuring consistency.

4.3. Ablation Studies

To verify the effectiveness of the three proposed improvement strategies, ablation experiments were
performed on the baseline model. For consistency and convenience in performance evaluation, these
ablation experiments were conducted on the DsLMF+ dataset. Experiment 1 introduced CM-SOM (C)
alone. Experiment 2 introduced RepVIT (R) alone. Experiment 3 introduced Re-FPN (F) alone.
Experiment 4 added RepVIT to Experiment 1. Experiment 5 added Re-FPN to Experiment 1. Experiment
6 added Re-FPN to Experiment 2. The results are shown in Table 1.

Table 1: Ablation experiment.

Model C R F P% R% | mAP@0.5/% | FPS/ | Parameters/M | GFLOPs
(fsh
YOoLoviin| - | - [ - [ 781 | 757 79.9 188 2.6 6.3
1 - | - [ 7751752 81.6 180 3.2 6.8
2 - | N ] - |815] 76.0 81.9 195 2.3 5.9
3 - - | V| 811 787 82.0 200 2.8 6.3
4 N | V] - ]85 726 82.5 231 25 6.1
5 N | -] NV ]739] 808 82.5 228 2.7 6.5
6 - [ N[ V814 762 82.6 244 2.7 6.4
7 V| V] v |854] 746 84.3 253 2.4 6.2

Based on the ablation results, the following conclusions can be drawn: Model 1, introducing the CM-
SOM structure alone, improves average precision by 1.7%, but precision, recall, and real-time
performance all decrease, indicating that the CM-SOM structure can effectively improve model detection
accuracy. However, due to its multi-layer convolutional structure increasing parameters, real-time
performance is reduced. Model 2, introducing the RepVIT structure alone, improves precision, recall,
and average precision, indicating that RepVIT can effectively bridge the semantic gap between different
layers during feature extraction and shallow-deep feature fusion. Model 3, introducing Re-FPN alone,
also improves precision, recall, and average precision, especially recall increased by 3%, representing
enhanced model adaptability and alleviated missed/false negative rates. In Model 4, the introduction of
CM-SOM and RepVIT increased mAP50 from 79.9% to 82.5%, showing their key role in improving
model accuracy, especially in complex scenes. Model 5, with the further integration of Re-FPN on top
of Model 1, further improved mAP50 to 82.5%. Model 6, based on Model 2, further optimizes detection
performance by introducing Re-FPN, maintaining mAP50 at 82.6%, enhancing focus on key features,
and improving small target detection. Model 7 is the final model. The fusion of the three innovative
schemes vyields significant performance gains, with precision, recall, average precision, and real-time
performance reaching 85.4%, 74.6%, 84.3%, and 253 FPS respectively. Moreover, parameter volume
and complexity are reduced, ultimately achieving a good balance between accuracy and efficiency.
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4.4, Comparative Experiments

To verify the behavior detection capability of the proposed model for coal dust scenes, it was
compared with currently popular object detection algorithm models. Under the same experimental
environment, using the same configuration and parameters, detection experiments were conducted on the
DsLMF+ dataset. Comparative models included YOLOvV5s, YOLOv7-tiny, Yolov8n, YOLOV9-tiny,
YOLOv10n, RTDETR-18, and the latest coal mine underground miner behavior detection methods
proposed by Liu [14] and Ni [15] (represented by Model-1 and Model-2, respectively). Comparative
experimental results are shown in Table 2.

Table 2: Performance comparison of different detection algorithms on the DsSLMF+ dataset.

Models F1-Score% MAP@0.5/% FPS(f s?) Parameters/M FLOPS/G
YOLOv5s 74.3 77.1 187 7.8 18.8
YOLOv7-tiny 73.4 77.5 190 6.0 13.3
YOLOv8n 73.1 77.2 202 3.1 6.8
YOLOV9s 76.8 82.5 194 61.9 22.1
YOLOv10n 73.6 78.1 200 2.7 6.5
YOLOv1ln 76.5 79.9 188 2.6 6.3
RTDETR-18 78.6 82.6 249 20.0 57
Model-1 75.7 79.3 221 3.4 9.8
Model-2 75.0 78.4 211 3.3 8.6
CRR-YOLO 79.1 84.3 253 2.4 6.2

According to the comparison results shown in Table 2, the CRR-YOLO algorithm outperforms other
YOLO variants in terms of detection accuracy and computational efficiency. Specifically, CRR-YOLO
achieves 84.3% mAP@0.5 and 79.1% F1-Score, surpassing most lightweight models and even some
large models. For example, CRR-YOLO's mAP@0.5 significantly exceeds that of YOLOv5s (77.1%),
YOLOvV7-tiny (77.5%), YOLOVS8N (77.2%), and is even higher than YOLOV9s (82.5%). Compared to
newer models like YOLOv10n (78.1%), YOLOv11n (79.9%), and RTDETR-18 (82.6%), CRR-YOLO
still maintains higher detection accuracy. In terms of F1-Score, it also outperforms the second-highest
RTDETR-18 (78.6%) and the third-highest YOLOv9s (76.8%), indicating that CRR-YOLO achieves a
good balance between precision and recall and possesses robustness in handling more challenging
detection thresholds. In terms of lightweight design, CRR-YOLO also has advantages, requiring only
2.4M parameters and 6.2 GFLOPs, which is substantially lower than the recent model RTDETR-18's
20M parameters and 57 GFLOPs, and also lower than the lightest version in YOLOv11, YOLOv1ln
(2.6M parameters, 6.3 GFLOPs). Compared with the latest behavior detection models, CRR-YOLO's
MAP@0.5 reaches 84.3%, significantly higher than Model-1 (79.3%) and Model-2 (78.4%), representing
an improvement of 5-6 percentage points. This highlights the importance of the synergistic design of
front-end image enhancement (dehazing) and back-end feature optimization (recalibration). CRR-YOLO
leads with an inference speed of 253 FPS, approximately 15-20% faster than Model-1 (221 FPS) and
Model-2 (211 FPS), fully meeting the real-time monitoring requirements underground. The customized
network structure for specific scenarios shows clear advantages over general models. CRR-YOLO
requires only 2.4M parameters and 6.2 GFLOPSs, representing approximately 30% fewer parameters and
35% lower computational complexity compared to the comparative models, demonstrating excellent
lightweight characteristics. These results indicate the effectiveness of CRR-YOLO in achieving the
optimal trade-off between accuracy and efficiency. Its lightweight design, combined with its strong
detection capability, especially for small and difficult targets, makes it a promising candidate for real-
time deployment in scenarios such as underground coal mines with dust and fog.

5. Conclusion

(1) This paper proposes CRR-YOLO, a personnel behavior detection model for underground dust and
fog scenarios. The model achieves an F1-Score of 79.1% and a mean Average Precision of 84.3%,
representing a 4.4% improvement over the baseline model. The model has 2.4M parameters and a
detection speed of 253 FPS. This model can rapidly and accurately detect the behaviors of underground
workers in high coal dust scenes.

(2) An image dehazing network named CM-SOM for underground dust environments is proposed. It
achieves efficient global-local synergistic modeling and detail recovery by fusing Fourier convolution
and contextual priors. A feature extraction network named RepVIT is designed to enhance the global
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semantic perception and contextual understanding capability of the backbone network under blurred
detail conditions. Re-FPN is constructed. Through its core Selective Boundary Aggregation and Feature
Enhancement modules, the cross-layer feature fusion process is optimized, effectively alleviating the
semantic gap and detail loss problems.

(3) Extensive experiments on self-built and public datasets demonstrate that the proposed CRR-
YOLO model outperforms current mainstream methods in terms of detection accuracy, robustness, and
computational efficiency, providing a reliable technical pathway for the practical deployment of
underground intelligent surveillance systems.
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