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Abstract: Chord-conditioned melody generation remains limited by coarse harmonic encodings that 
collapse extended, altered, and modal chords into a few root–quality labels, preventing models from 
learning nuanced tension and resolution behavior. This paper introduces a theory-structured framework 
that enriches harmonic conditioning and guides decoding in a modular Transformer architecture. First, 
a Theory-Structured Harmonic Embedding decomposes each chord into additive Root, Quality, 
Extension, and Tension components, yielding interpretable sub-embeddings without incurring a 
combinatorial chord vocabulary. Second, a Harmony-Aware Soft Constrained Decoding scheme adjusts 
pitch logits at inference time using music-theoretic priors on chord-tone preference, tension validity, 
non-chord-tone resolution, and scale adherence, controlled by a single constraint-strength parameter. 
Experiments on the Enhanced Wikifonia Leadsheet Dataset compare a CMT-style baseline, an EC2-VAE 
model, and three ablation variants. The full model significantly improves Chord Tone Ratio, Tension 
Correctness, and Non-Chord-Tone Resolution, while maintaining corpus-level pitch and rhythm 
statistics as measured by MGEval KLD and overlap area. These results demonstrate that explicit 
harmonic structure and theory-aware decoding jointly yield melodies that are both stylistically faithful 
and more music-theoretically aligned. 
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1. Introduction 

Recent advances in symbolic music generation are largely driven by attention-based Transformer 
models [1]–[3], which capture long-range dependencies and produce fluent sequences. Chord-
conditioned melody generation remains a core task: the model must produce a monophonic line that is 
rhythmically coherent and harmonically aligned with a chord progression [4]–[6]. Despite architectural 
progress, current systems still struggle to encode fundamental music-theoretic structure [7], [8], often 
yielding locally smooth melodies that lack hierarchical rhythmic organization, functional clarity, and 
convincing tension–resolution behavior. 

A key limitation is the oversimplified harmonic input. Most systems condition on a chord root and 
coarse quality label (e.g., “C major,” “E minor”) [6], [9], [10], collapsing harmonically distinct entities 
such as extended, altered, or modal chords into a single token. This abstraction discards information 
about characteristic sevenths, modal colorations, and altered tensions (e.g.,♭9, ♯11) that shape melodic 
choices. When models must infer these distinctions implicitly, they frequently mishandle chord tones, 
tensions, and non-chord-tone resolution. In practice, expressive capacity is constrained less by 
architecture than by the sparsity of the harmonic signal. 

This paper proposes a unified framework that enriches harmonic conditioning and guides decoding. 
A Theory-Structured Harmonic Embedding decomposes each chord into additive Root, Quality, 
Extension, and Tension components, yielding interpretable sub-embeddings that encode functional roles 
while avoiding the combinatorial explosion of full chord vocabularies. A Harmony-Aware Soft 
Constrained Decoding scheme then adjusts pitch-decoder logits at inference time to encourage chord-
tone preference, tension validity, and appropriate resolution patterns, controlled by a single scalar  that 
enables post-training interpretability and controllability. 

We investigate: (1) whether structured harmonic embeddings improve chord-tone correctness, 
tension handling, and resolution accuracy; (2) whether soft constraints promote theory-aligned behavior 
without sacrificing generative diversity. Our contributions are: (a) a structured, interpretable chord-
embedding design grounded in music theory; (b) a decoding mechanism that injects harmonic knowledge 
directly into the generative process; and (c) a comprehensive evaluation that combines theory-aligned 
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metrics with statistical measures from the MGEval framework. 

2. Related Work 

2.1 Sequence Models and Controllable Generation 

Symbolic music generation is dominated by attention-based sequence models, with the Transformer 
architecture [1], [2] enabling effective modeling of long-range musical structure through event-based 
representations [4], [11], [12]. Although recent work explores diffusion models for symbolic music and 
chord-conditioned melody generation [13], [14] and state-space sequence models for long-range 
structure [15], the autoregressive Transformer remains the standard for chord-conditioned generation and 
controlled ablation studies. As model sizes range from millions to billions of parameters [16], [17], 
efficient conditioning becomes essential. This work emphasizes improving harmonic representation 
rather than increasing architectural scale. 

Controllability is typically achieved through conditional architectures [4], [5], [10], [11]. The Chord-
conditioned Melody Transformer (CMT) [4] employs a Chord Encoder and separate Rhythm and Pitch 
Decoders, demonstrating strong performance with augmented datasets. However, its simplified chord 
encoding limits expressivity with complex harmonic vocabulary. Latent-variable approaches such as 
EC2-VAE [18] and hierarchical VAEs for music [19] provide abstract control but require nontrivial 
disentanglement techniques. By contrast, our method achieves explicit, interpretable control by enriching 
the harmonic embedding and applying theory-informed logit biasing rather than manipulating latent 
spaces. 

2.2 Music-Theoretic Constraints and Objective Evaluation 

Integrating music-theoretic principles has become an important strategy for improving coherence and 
interpretability in generative models [7]. Hard rules guarantee correctness but often reduce creativity, 
motivating soft-constraint approaches that bias but do not override the model’s learned distribution [20], 
[21]. Our framework adopts this principle by applying harmonic priors during inference while preserving 
stylistic fluency. 

Evaluating generative music requires metrics beyond token accuracy or loss, which fail to capture 
multimodal musical validity. We therefore rely on theory-aligned measures [22], Chord Tone Ratio 
(CTR), Tension Correctness (TC), and Non-Chord Tone Resolution Score (NCTRS), to assess harmonic 
behavior [6]. To ensure constraints do not distort the stylistic manifold, we use the MGEval framework 
[23] to compare generated and training MIDI via pitch- and rhythm-based descriptors. 

3. Methodology 

3.1 Theory-Structured Harmonic Embedding 

The central component of our approach is the explicit and fine-grained representation of harmonic 
function [7]. At each timestep 𝑡𝑡 , the conditioning chord 𝑐𝑐𝑡𝑡  is mapped to a structured, additive 
embedding 𝑒𝑒𝑡𝑡chord. This embedding decomposes the chord into interpretable musical factors: 

𝑒𝑒𝑡𝑡chord = 𝑒𝑒𝑡𝑡root + 𝑒𝑒𝑡𝑡
qual + ∑

𝑥𝑥∈𝑋𝑋𝑡𝑡
𝑒𝑒𝑥𝑥ext + ∑

𝑧𝑧∈𝑍𝑍𝑡𝑡
𝑒𝑒𝑧𝑧ten.                                    (1) 

This additive formulation is essential. Rather than assigning a unique vector to every possible chord 
type, an approach that would cause severe data sparsity and a combinatorial explosion [8], the model 
operates over a vocabulary of functional musical components. The vocabulary consists of 12 root classes, 
nine chord qualities (e.g., Maj7, Min7, Dom7), three extensions (9, 11, 13), and six common alterations 
(♭9, ♯9, ♯11, ♭13, etc.) [10], [24], [25].  

The symbolic sequence is quantized at 16th-note resolution, and the chord embedding 𝑒𝑒𝑡𝑡chord  is 
repeated at each timestep to maintain continuous harmonic context. A metrical positional embedding 
encodes the 16 subdivisions of the bar [26], which is crucial for later soft constraints that operate on 
strong-beat structure. 
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3.2 Dataset 

The Enhanced Wikifonia Leadsheet Dataset (EWLD), a music lead sheet dataset with more than 
5.000 scores [27], is selected for its density of extended and altered chords, making it well-suited for 
evaluating harmonically aware generative systems. Preprocessing begins with quantization of melody 
and chord sequences to 16th-note resolution, ensuring rhythmic alignment. 

Scores lacking either chord symbols or melodic lines were excluded. To promote functional rather 
than absolute pitch learning, all songs are transposed into either C major or A minor. The dataset is then 
segmented into eight-bar windows and divided into 8:1:1 training/validation/test splits. 

3.3 Modular Architecture 

The system follows a three-module architecture described in prior work [4]: a Chord Encoder, a 
Rhythm Decoder, and a Pitch Decoder. The Chord Encoder 𝐸𝐸chord  is a Transformer encoder that 
processes the structured chord embeddings to produce contextual harmonic representations 𝐻𝐻 . The 
Rhythm Decoder 𝐷𝐷rhythm is an autoregressive Transformer that predicts onset, sustain, and rest tokens 
conditioned on 𝐻𝐻. The Pitch Decoder 𝐷𝐷pitch is another autoregressive Transformer that predicts pitch 
tokens while attending to both 𝐻𝐻 and the predicted rhythm sequence. 

Training proceeds in two phases. First, 𝐸𝐸chord and 𝐷𝐷rhythm are trained jointly. Because rhythm patterns 
are invariant to key, transposition augmentation across all 12 keys is applied, substantially increasing 
rhythm-level training data and improving robustness. In the second phase,  𝐷𝐷pitch is trained with 𝐷𝐷rhythm 
frozen. Training remains in the canonical key, enabling melodies to be generated functionally and later 
transposed to any desired key at inference time. 

3.4 Harmony-Aware Soft Constrained Decoding 

During inference, the pitch logits produced by 𝐷𝐷pitch are refined using a set of music-theoretic soft 
constraints. For each timestep t and candidate pitch p, the model modifies the raw logits ℓ𝑡𝑡,𝑝𝑝 as: 

ℓ
˜

𝑡𝑡,𝑝𝑝 = ℓ𝑡𝑡,𝑝𝑝 + 𝜆𝜆𝛥𝛥𝑡𝑡,𝑝𝑝,                                                                   (2) 

Where 

𝛥𝛥𝑡𝑡,𝑝𝑝 = ∑
𝑘𝑘=1

𝐾𝐾
𝛼𝛼𝑘𝑘𝑓𝑓𝑘𝑘(𝑡𝑡, 𝑝𝑝).                                                              (3) 

Here 𝜆𝜆  is a global constraint-strength parameter, 𝛼𝛼𝑘𝑘  are fixed non-negative weights, and each 
constraint term 𝑓𝑓𝑘𝑘(𝑡𝑡,𝑝𝑝) returns a score in [0,1].  𝐶𝐶1 rewards chord tones on metrically strong positions 
identified by the bar-level positional embedding, and is near zero elsewhere. 𝐶𝐶2 penalizes pitches that 
conflict with the chord’s allowed extensions or alterations. 𝐶𝐶3 rewards non-chord tones whose 
subsequent note resolves by step to a chord tone within a short temporal window. 𝐶𝐶4 applies a mild 
penalty to pitches outside the local scale implied by the chord, reducing unnecessary chromaticism while 
allowing occasional expressive deviations [28]–[30]. 

4. Experiments 

4.1 Experimental Design 

All models were trained for 150 epochs on the EWLD training split and evaluated on the held-out 
test set by generating one eight-bar melody for each test chord progression, yielding 2,950 generated 
sequences following the CMT protocol [4]. We consider two baselines and three ablation variants. The 
CMT-style baseline encodes each chord using only its root and generates melodies via unconstrained 
sampling (𝜆𝜆 = 0)  [4]. The EC2-VAE baseline provides a latent-variable comparison model, using 
variational sampling conditioned on harmonic features [18]. 
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Table 1 Summary of Experimental Model Variants. 

Model Input Representation Decoding Method 
CMT-style Baseline Root Standard Sampling 

EC2-VAE Latent Variable Standard Sampling 
A1: Structured Only Full Structured Input Standard Sampling 

A2: Coarse + Constraints Root Soft Constraints 
A3: Full Model Full Structured Input Soft Constraints 

The ablation variants examine the role of structured harmonic input and soft-constraint decoding. A1 
uses the full structured harmonic embedding with unconstrained decoding (𝜆𝜆 = 0). A2 applies soft-
constraint decoding while retaining the coarse harmonic input of the baseline. A3 represents the full 
model configuration with both structured input and soft constraints.  

4.2 Theory-Driven Objective Metrics 

To evaluate the musicological validity of generated melodies, we employ three objective metrics 
aligned with tonal theory. Chord Tone Ratio (CTR) measures the percentage of note onsets that fall on 
chord tones [6]. Tension Correctness (TC) measures the proportion of generated tensions or extensions 
that belong to the set explicitly allowed by the chord symbol. Non-Chord-Tone Resolution Score 
(NCTRS) quantifies voice-leading quality by measuring how often non-chord tones resolve by step to a 
chord tone within a short temporal window. Together, these metrics target stability, tension validity, and 
classical tension–resolution behavior. 

4.3 Diversity and Statistical Fidelity 

To ensure that the theory-aware soft constraints do not distort corpus-level style or reduce diversity, 
we evaluate statistical fidelity using the original MGEval framework [23]. For each generated melody 
and each EWLD test melody, we extract all nine features defined in MGEval: pitch count (PC), pitch 
class histogram (PCH), pitch class transition matrix (PCTM), pitch range (PR), pitch interval (PI), note 
count (NC), average inter-onset interval (IOI), note length histogram (NLH), and note length transition 
matrix (NLTM). 

For each feature 𝑓𝑓 , we compute Euclidean distances between all pairs of test melodies 
𝛿𝛿𝑓𝑓(𝑀𝑀test,𝑀𝑀test)and between test melodies and model outputs 𝛿𝛿𝑓𝑓(𝑀𝑀test,𝑀𝑀model) . Following Yang & 
Lerch [23] and Choi et al. [4], these distance sets are converted to probability density functions, and their 
similarity is summarized by Kullback–Leibler divergence (KLD) and overlapping area (OA) [23]. Low 
KLD and high OA indicate that the model reproduces the pitch and rhythm statistics of EWLD for the 
feature 𝑓𝑓 . 

4.4 Constraint-Strength Sensitivity 

We analyze the effect of the constraint-strength parameter 𝜆𝜆 on theory alignment and diversity. Using 
the trained full model A3, we vary 𝜆𝜆  only at inference time with 𝜆𝜆 ∈ {0.0,0.25,0.5,0.75,1.0} , and 
generate one eight-bar melody per test progression. 

For each 𝜆𝜆, we compute CTR, TC, and NCTRS as in Section 4.2. To assess diversity and style, we 
report average KLD and OA across the nine MGEval features over the generated corpus. This sensitivity 
analysis characterizes the trade-off between stronger theory constraints and preserved variety. 

5. Results 

5.1 Theory-Aligned Harmonic Behavior 

Table 2 reports the theory-aligned metrics on the test progressions. The dataset row provides a human 
reference. The CMT-style baseline slightly exceeds the dataset in CTR but lags behind in TC and 
NCTRS, while EC2-VAE performs worst on all three measures. Adding Theory-Structured Harmonic 
Embeddings (A1) yields clear gains over CMT, particularly in TC and NCTRS. Applying only Harmony-
Aware Soft Constrained Decoding to coarse input (A2) produces intermediate performance, improving 
TC and NCTRS relative to CMT with similar CTR. The full model (A3) achieves the best results overall, 
with the highest CTR, TC, and NCTRS among models and a noticeably smaller gap to the dataset in TC 
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and NCTRS. 

Table 2 Theory-aligned metrics on test progressions. 

Model CTR (%) TC (%) NCTRS (%) 
Dataset 70.51 80.20 79.60 

EC2-VAE 63.15 61.05 57.41 
CMT-style Baseline 72.35 69.25 63.55 
A1: Structured Only 73.40 75.12 69.35 

A2: Coarse + Constraints 72.20 74.80 67.10 
A3: Full Model 75.14 77.63 72.45 

5.2 Stylistic Fidelity under MGEval 

Table 3 shows scalar MGEval features for the test set and all models. All variants stay close to the 
corpus in PR and IOI. A3 tracks the dataset as closely as the CMT baseline, indicating that the structured 
embedding and constraints do not distort basic pitch-rhythm statistics. 

Table 3 MGEval scalar features (mean ± standard deviation). 

Model PC PR PI NC IOI 
Dataset 8.10 ± 2.41 13.00 ± 3.52 2.50 ± 0.86 30.20 ± 9.80 0.27 ± 0.09 

CMT-style Baseline 7.20 ± 1.95 12.10 ± 3.11 2.30 ± 0.60 29.10 ± 9.93 0.27 ± 0.09 
EC2-VAE 6.10 ± 2.22 11.80 ± 4.80 3.10 ± 1.41 31.50 ± 13.72 0.29 ± 0.13 

A1: Structured Only 7.30 ± 1.83 12.30 ± 3.04 2.40 ± 0.63 29.40 ± 9.60 0.27 ± 0.10 
A2: Coarse + Constraints 7.10 ± 1.93 12.00 ± 3.03 2.35 ± 0.60 29.00 ± 9.81 0.27 ± 0.09 

A3: Full Model 7.40 ± 1.85 12.60 ± 3.10 2.40 ± 0.58 29.60 ± 9.72 0.27 ± 0.09 
We also compare intra-set and inter-set distance distributions for all nine MGEval features using 

Kullback–Leibler divergence (KLD) and overlapping area (OA). Table 4 reports averages over the nine 
features. CMT already models corpus statistics well. EC2-VAE shows much higher average KLD and 
lower OA. A1 and A2 stay in the same range as CMT, and the full model A3 achieves slightly lower 
divergence and higher overlap, confirming that theory-aware control does not move the model away from 
the EWLD manifold. 

Table 4 Average KLD and OA. 

Model Avg. KLD (↓) Avg. OA (↑) 
CMT-style Baseline 0.02 0.94 

EC2-VAE 0.11 0.85 
A1: Structured Only 0.02 0.95 

A2: Coarse + Constraints 0.03 0.93 
A3: Full Model 0.01 0.96 

5.3 Effect of Constraint Strength 

Table 5 summarizes the effect of varying 𝜆𝜆 for A3. Increasing 𝜆𝜆 from 0.0 to 0.5 steadily improves 
theory-aligned metrics, with only small additional gains beyond 𝜆𝜆 = 0.5 . Average MGEval KLD 
simultaneously decreases and OA increases, indicating closer alignment with EWLD. For 𝜆𝜆 ≥ 0.75,, 
KLD rises slightly and OA falls modestly, suggesting a mild loss of stylistic flexibility. Overall, 𝜆𝜆 = 0.5 
provides a good balance between theory alignment and corpus-level fidelity and is used in the main 
experiments. 

Table 5 Effect of constraint strength λ for full model A3. 

λ CTR (%) TC (%) NCTRS (%) Avg. KLD (↓) Avg. OA (↑) 
0.00 73.50 75.00 69.00 0.020 0.950 
0.25 74.30 76.40 71.00 0.015 0.955 
0.50 75.14 77.63 72.45 0.010 0.960 
0.75 75.60 78.00 73.00 0.012 0.955 
1.00 75.80 78.20 73.20 0.018 0.948 
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6. Conclusion 

This paper tackles the gap between powerful sequence models and weak music-theoretic structure in 
chord-conditioned melody generation. We showed that coarse root–quality chord encodings limit 
harmonic control and tension–resolution behavior, and proposed a two-part framework to address this: a 
Theory-Structured Harmonic Embedding that factorizes chords into Root, Quality, Extension, and 
Tension components, and a Harmony-Aware Soft Constrained Decoding scheme that reshapes pitch 
logits using music-theoretic priors under a single tunable constraint parameter. 

On the Enhanced Wikifonia Leadsheet Dataset, both components independently improve Chord Tone 
Ratio, Tension Correctness, and Non-Chord-Tone Resolution over a CMT-style baseline, while the full 
model achieves the best overall theory-aligned performance and closely tracks corpus pitch–rhythm 
statistics under MGEval. These results indicate that explicit harmonic structure and soft, theory-informed 
decoding can produce melodies that are more music-theoretically consistent without compromising 
stylistic fidelity. Future work includes extending the approach to polyphony, broader genres, and human 
listening studies to better connect objective metrics with perceived musical quality. 
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