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Abstract: Chord-conditioned melody generation remains limited by coarse harmonic encodings that
collapse extended, altered, and modal chords into a few root—quality labels, preventing models from
learning nuanced tension and resolution behavior. This paper introduces a theory-structured framework
that enriches harmonic conditioning and guides decoding in a modular Transformer architecture. First,
a Theory-Structured Harmonic Embedding decomposes each chord into additive Root, Quality,
Extension, and Tension components, yielding interpretable sub-embeddings without incurring a
combinatorial chord vocabulary. Second, a Harmony-Aware Soft Constrained Decoding scheme adjusts
pitch logits at inference time using music-theoretic priors on chord-tone preference, tension validity,
non-chord-tone resolution, and scale adherence, controlled by a single constraint-strength parameter.
Experiments on the Enhanced Wikifonia Leadsheet Dataset compare a CMT-style baseline, an EC2-VAE
model, and three ablation variants. The full model significantly improves Chord Tone Ratio, Tension
Correctness, and Non-Chord-Tone Resolution, while maintaining corpus-level pitch and rhythm
statistics as measured by MGEval KLD and overlap area. These results demonstrate that explicit
harmonic structure and theory-aware decoding jointly yield melodies that are both stylistically faithful
and more music-theoretically aligned.
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1. Introduction

Recent advances in symbolic music generation are largely driven by attention-based Transformer
models [1]-[3], which capture long-range dependencies and produce fluent sequences. Chord-
conditioned melody generation remains a core task: the model must produce a monophonic line that is
rhythmically coherent and harmonically aligned with a chord progression [4]-[6]. Despite architectural
progress, current systems still struggle to encode fundamental music-theoretic structure [7], [8], often
yielding locally smooth melodies that lack hierarchical rhythmic organization, functional clarity, and
convincing tension—resolution behavior.

A key limitation is the oversimplified harmonic input. Most systems condition on a chord root and
coarse quality label (e.g., “C major,” “E minor”) [6], [9], [10], collapsing harmonically distinct entities
such as extended, altered, or modal chords into a single token. This abstraction discards information

about characteristic sevenths, modal colorations, and altered tensions (e.g.,b9, #11) that shape melodic

choices. When models must infer these distinctions implicitly, they frequently mishandle chord tones,
tensions, and non-chord-tone resolution. In practice, expressive capacity is constrained less by
architecture than by the sparsity of the harmonic signal.

This paper proposes a unified framework that enriches harmonic conditioning and guides decoding.
A Theory-Structured Harmonic Embedding decomposes each chord into additive Root, Quality,
Extension, and Tension components, yielding interpretable sub-embeddings that encode functional roles
while avoiding the combinatorial explosion of full chord vocabularies. A Harmony-Aware Soft
Constrained Decoding scheme then adjusts pitch-decoder logits at inference time to encourage chord-
tone preference, tension validity, and appropriate resolution patterns, controlled by a single scalar that
enables post-training interpretability and controllability.

We investigate: (1) whether structured harmonic embeddings improve chord-tone correctness,
tension handling, and resolution accuracy; (2) whether soft constraints promote theory-aligned behavior
without sacrificing generative diversity. Our contributions are: (a) a structured, interpretable chord-
embedding design grounded in music theory; (b) a decoding mechanism that injects harmonic knowledge
directly into the generative process; and (c) a comprehensive evaluation that combines theory-aligned
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metrics with statistical measures from the MGEval framework.

2. Related Work
2.1 Sequence Models and Controllable Generation

Symbolic music generation is dominated by attention-based sequence models, with the Transformer
architecture [1], [2] enabling effective modeling of long-range musical structure through event-based
representations [4], [11], [12]. Although recent work explores diffusion models for symbolic music and
chord-conditioned melody generation [13], [14] and state-space sequence models for long-range
structure [15], the autoregressive Transformer remains the standard for chord-conditioned generation and
controlled ablation studies. As model sizes range from millions to billions of parameters [16], [17],
efficient conditioning becomes essential. This work emphasizes improving harmonic representation
rather than increasing architectural scale.

Controllability is typically achieved through conditional architectures [4], [5], [10], [11]. The Chord-
conditioned Melody Transformer (CMT) [4] employs a Chord Encoder and separate Rhythm and Pitch
Decoders, demonstrating strong performance with augmented datasets. However, its simplified chord
encoding limits expressivity with complex harmonic vocabulary. Latent-variable approaches such as
EC2-VAE [18] and hierarchical VAEs for music [19] provide abstract control but require nontrivial
disentanglement techniques. By contrast, our method achieves explicit, interpretable control by enriching
the harmonic embedding and applying theory-informed logit biasing rather than manipulating latent
spaces.

2.2 Music-Theoretic Constraints and Objective Evaluation

Integrating music-theoretic principles has become an important strategy for improving coherence and
interpretability in generative models [7]. Hard rules guarantee correctness but often reduce creativity,
motivating soft-constraint approaches that bias but do not override the model’s learned distribution [20],
[21]. Our framework adopts this principle by applying harmonic priors during inference while preserving
stylistic fluency.

Evaluating generative music requires metrics beyond token accuracy or loss, which fail to capture
multimodal musical validity. We therefore rely on theory-aligned measures [22], Chord Tone Ratio
(CTR), Tension Correctness (TC), and Non-Chord Tone Resolution Score (NCTRS), to assess harmonic
behavior [6]. To ensure constraints do not distort the stylistic manifold, we use the MGEval framework
[23] to compare generated and training MIDI via pitch- and rhythm-based descriptors.

3. Methodology
3.1 Theory-Structured Harmonic Embedding

The central component of our approach is the explicit and fine-grained representation of harmonic
function [7]. At each timestep t , the conditioning chord c; is mapped to a structured, additive

embedding ef°"?. This embedding decomposes the chord into interpretable musical factors:

etc[mrd — etmot + e;]”a/ + Z e;’)(t + Z e;en. (1)
XEX}¢ Z€Z;

This additive formulation is essential. Rather than assigning a unique vector to every possible chord
type, an approach that would cause severe data sparsity and a combinatorial explosion [8], the model
operates over a vocabulary of functional musical components. The vocabulary consists of 12 root classes,
nine chord qualities (e.g., Maj7, Min7, Dom7), three extensions (9, 11, 13), and six common alterations
(b9, #9, #11, b13, etc.) [10], [24], [25].

The symbolic sequence is quantized at 16th-note resolution, and the chord embedding e is

repeated at each timestep to maintain continuous harmonic context. A metrical positional embedding
encodes the 16 subdivisions of the bar [26], which is crucial for later soft constraints that operate on
strong-beat structure.
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3.2 Dataset

The Enhanced Wikifonia Leadsheet Dataset (EWLD), a music lead sheet dataset with more than
5.000 scores [27], is selected for its density of extended and altered chords, making it well-suited for
evaluating harmonically aware generative systems. Preprocessing begins with quantization of melody
and chord sequences to 16th-note resolution, ensuring rhythmic alignment.

Scores lacking either chord symbols or melodic lines were excluded. To promote functional rather
than absolute pitch learning, all songs are transposed into either C major or A minor. The dataset is then
segmented into eight-bar windows and divided into 8:1:1 training/validation/test splits.

3.3 Modular Architecture

The system follows a three-module architecture described in prior work [4]: a Chord Encoder, a
Rhythm Decoder, and a Pitch Decoder. The Chord Encoder E ., is a Transformer encoder that
processes the structured chord embeddings to produce contextual harmonic representations H. The
Rhythm Decoder D, is an autoregressive Transformer that predicts onset, sustain, and rest tokens
conditioned on H. The Pitch Decoder D, is another autoregressive Transformer that predicts pitch
tokens while attending to both H and the predicted rhythm sequence.

Training proceeds in two phases. First, E .4 and D 4, are trained jointly. Because rhythm patterns
are invariant to key, transposition augmentation across all 12 keys is applied, substantially increasing
rthythm-level training data and improving robustness. In the second phase, D, is trained with D
frozen. Training remains in the canonical key, enabling melodies to be generated functionally and later
transposed to any desired key at inference time.

3.4 Harmony-Aware Soft Constrained Decoding

During inference, the pitch logits produced by D ;. are refined using a set of music-theoretic soft
constraints. For each timestep ¢and candidate pitch p, the model modifies the raw logits ¢, as:

by =4y + A4y, 2)
Where

K
At,p = kzz:lakfk(t' P) (3)

Here A is a global constraint-strength parameter, @, are fixed non-negative weights, and each
constraint term f, (¢, p) returns a score in /0,1]. C; rewards chord tones on metrically strong positions
identified by the bar-level positional embedding, and is near zero elsewhere. C, penalizes pitches that
conflict with the chord’s allowed extensions or alterations. C; rewards non-chord tones whose
subsequent note resolves by step to a chord tone within a short temporal window. C, applies a mild
penalty to pitches outside the local scale implied by the chord, reducing unnecessary chromaticism while
allowing occasional expressive deviations [28]-[30].

4. Experiments
4.1 Experimental Design

All models were trained for 150 epochs on the EWLD training split and evaluated on the held-out
test set by generating one eight-bar melody for each test chord progression, yielding 2,950 generated
sequences following the CMT protocol [4]. We consider two baselines and three ablation variants. The
CMT-style baseline encodes each chord using only its root and generates melodies via unconstrained
sampling (4 = 0) [4]. The EC2-VAE baseline provides a latent-variable comparison model, using
variational sampling conditioned on harmonic features [18].
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Table 1 Summary of Experimental Model Variants.

Model Input Representation Decoding Method

CMT-style Baseline Root Standard Sampling

EC2-VAE Latent Variable Standard Sampling

Al: Structured Only Full Structured Input Standard Sampling
A2: Coarse + Constraints Root Soft Constraints
A3: Full Model Full Structured Input Soft Constraints

The ablation variants examine the role of structured harmonic input and soft-constraint decoding. A1
uses the full structured harmonic embedding with unconstrained decoding (4 = 0). A2 applies soft-
constraint decoding while retaining the coarse harmonic input of the baseline. A3 represents the full
model configuration with both structured input and soft constraints.

4.2 Theory-Driven Objective Metrics

To evaluate the musicological validity of generated melodies, we employ three objective metrics
aligned with tonal theory. Chord Tone Ratio (CTR) measures the percentage of note onsets that fall on
chord tones [6]. Tension Correctness (TC) measures the proportion of generated tensions or extensions
that belong to the set explicitly allowed by the chord symbol. Non-Chord-Tone Resolution Score
(NCTRS) quantifies voice-leading quality by measuring how often non-chord tones resolve by step to a
chord tone within a short temporal window. Together, these metrics target stability, tension validity, and
classical tension—resolution behavior.

4.3 Diversity and Statistical Fidelity

To ensure that the theory-aware soft constraints do not distort corpus-level style or reduce diversity,
we evaluate statistical fidelity using the original MGEval framework [23]. For each generated melody
and each EWLD test melody, we extract all nine features defined in MGEval: pitch count (PC), pitch
class histogram (PCH), pitch class transition matrix (PCTM), pitch range (PR), pitch interval (PI), note
count (NC), average inter-onset interval (IOI), note length histogram (NLH), and note length transition
matrix (NLTM).

For each feature f , we compute Euclidean distances between all pairs of test melodies
8 (Mo M o) and between test melodies and model outputs 8 (M,uzp M poger) . Following Yang &
Lerch [23] and Choi et al. [4], these distance sets are converted to probability density functions, and their
similarity is summarized by Kullback-Leibler divergence (KLD) and overlapping area (OA) [23]. Low
KLD and high OA indicate that the model reproduces the pitch and rhythm statistics of EWLD for the
feature f .

4.4 Constraint-Strength Sensitivity

We analyze the effect of the constraint-strength parameter A on theory alignment and diversity. Using
the trained full model A3, we vary A only at inference time with A € {0.0,0.25,0.5,0.75,1.0}, and
generate one eight-bar melody per test progression.

For each A, we compute CTR, TC, and NCTRS as in Section 4.2. To assess diversity and style, we
report average KLD and OA across the nine MGEval features over the generated corpus. This sensitivity
analysis characterizes the trade-off between stronger theory constraints and preserved variety.

5. Results
5.1 Theory-Aligned Harmonic Behavior

Table 2 reports the theory-aligned metrics on the test progressions. The dataset row provides a human
reference. The CMT-style baseline slightly exceeds the dataset in CTR but lags behind in TC and
NCTRS, while EC2-VAE performs worst on all three measures. Adding Theory-Structured Harmonic
Embeddings (A1) yields clear gains over CMT, particularly in TC and NCTRS. Applying only Harmony-
Aware Soft Constrained Decoding to coarse input (A2) produces intermediate performance, improving
TC and NCTRS relative to CMT with similar CTR. The full model (A3) achieves the best results overall,
with the highest CTR, TC, and NCTRS among models and a noticeably smaller gap to the dataset in TC
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and NCTRS.

Table 2 Theory-aligned metrics on test progressions.

Model CTR (%) TC (%) NCTRS (%)
Dataset 70.51 80.20 79.60
EC2-VAE 63.15 61.05 57.41
CMT-style Baseline 72.35 69.25 63.55
Al: Structured Only 73.40 75.12 69.35
A2: Coarse + Constraints 72.20 74.80 67.10
A3: Full Model 75.14 77.63 72.45

5.2 Swlistic Fidelity under MGEval

Table 3 shows scalar MGEval features for the test set and all models. All variants stay close to the
corpus in PR and IOI. A3 tracks the dataset as closely as the CMT baseline, indicating that the structured
embedding and constraints do not distort basic pitch-rhythm statistics.

Table 3 MGEval scalar features (mean + standard deviation).

Model PC PR PI NC 101
Dataset 8.10+241 | 13.00+3.52 | 2.50+0.86 30.20 + 9.80 0.27 £0.09
CMT-style Baseline 7.20+195 | 12.10+3.11 | 2.30+0.60 29.10+£9.93 0.27 £0.09
EC2-VAE 6.10+222 | 11.80+4.80 | 3.10+1.41 31.50+13.72 0.29+0.13
Al: Structured Only 730+1.83 | 12.30+3.04 | 2.40+0.63 29.40 £9.60 0.27£0.10
A2: Coarse + Constraints 7.10+1.93 12.00+3.03 | 2.35+0.60 29.00 £ 9.81 0.27 £0.09
A3: Full Model 7.40£1.85 | 12.60+£3.10 | 2.40 +0.58 29.60 £ 9.72 0.27 £ 0.09

We also compare intra-set and inter-set distance distributions for all nine MGEval features using
Kullback—Leibler divergence (KLD) and overlapping area (OA). Table 4 reports averages over the nine
features. CMT already models corpus statistics well. EC2-VAE shows much higher average KLD and
lower OA. Al and A2 stay in the same range as CMT, and the full model A3 achieves slightly lower
divergence and higher overlap, confirming that theory-aware control does not move the model away from
the EWLD manifold.

Table 4 Average KLD and OA.
Model Avg. KLD () Avg. OA (1)
CMT-style Baseline 0.02 0.94
EC2-VAE 0.11 0.85
Al: Structured Only 0.02 0.95
A2: Coarse + Constraints 0.03 0.93
A3: Full Model 0.01 0.96

5.3 Effect of Constraint Strength

Table 5 summarizes the effect of varying A for A3. Increasing A from 0.0 to 0.5 steadily improves
theory-aligned metrics, with only small additional gains beyond A = 0.5. Average MGEval KLD
simultaneously decreases and OA increases, indicating closer alignment with EWLD. For 4 = 0.75,,
KLD rises slightly and OA falls modestly, suggesting a mild loss of stylistic flexibility. Overall, 1 = 0.5
provides a good balance between theory alignment and corpus-level fidelity and is used in the main
experiments.

Table 5 Effect of constraint strength A for full model A3.

A CTR (%) | TC (%) | NCTRS (%) | Avg.KLD () | Avg. OA (1)
0.00 73.50 75.00 69.00 0.020 0.950
0.25 74.30 76.40 71.00 0.015 0.955
0.50 75.14 77.63 72.45 0.010 0.960
0.75 75.60 78.00 73.00 0.012 0.955
1.00 75.80 78.20 73.20 0.018 0.948
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6. Conclusion

This paper tackles the gap between powerful sequence models and weak music-theoretic structure in
chord-conditioned melody generation. We showed that coarse root—quality chord encodings limit
harmonic control and tension—resolution behavior, and proposed a two-part framework to address this: a
Theory-Structured Harmonic Embedding that factorizes chords into Root, Quality, Extension, and
Tension components, and a Harmony-Aware Soft Constrained Decoding scheme that reshapes pitch
logits using music-theoretic priors under a single tunable constraint parameter.

On the Enhanced Wikifonia Leadsheet Dataset, both components independently improve Chord Tone
Ratio, Tension Correctness, and Non-Chord-Tone Resolution over a CMT-style baseline, while the full
model achieves the best overall theory-aligned performance and closely tracks corpus pitch—-rhythm
statistics under MGEval. These results indicate that explicit harmonic structure and soft, theory-informed
decoding can produce melodies that are more music-theoretically consistent without compromising
stylistic fidelity. Future work includes extending the approach to polyphony, broader genres, and human
listening studies to better connect objective metrics with perceived musical quality.
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