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Abstract: This investigation examines the critical influence of spanwise position selection on 
computational accuracy and solution stability in Lifting Line Theory Fourier series representations for 
finite wing analysis. Lifting Line Theory serves as a fundamental aerodynamic tool for estimating 
essential performance parameters of the finite wing, including lift coefficient and induced drag, 
particularly valuable during preliminary wing design phases where computational efficiency takes 
precedence over detailed flow modeling. The result accuracy and convergent behavior of Lifting Line 
Theory solutions demonstrate pronounced sensitivity to the placement of spanwise evaluation points 
within the Fourier series framework. This study systematically evaluates multiple position distribution 
strategies, encompassing concentrated arrangements near the wing tip and wing root, as well as uniform 
distributions, to quantify their respective impacts on solution precision and convergence characteristics. 
The analysis employs tapered wing configurations with symmetric airfoil sections across taper ratios of 
0, 0.5, and 1.0, with an aspect ratio of 10. Results demonstrate that specific position angle ranges yield 
optimal computational accuracy, with substantial error occurring when two varying angular positions 
both approach either minimal or maximal domain boundaries. The uniform angle distribution 
methodology ensures robust solution stability and accuracy, even when extending the analysis to high-
order term representations exceeding 1000 terms. Alternative distribution schemes exhibit inferior 
convergence properties and limited stability regions. These findings provide practical guidance for 
optimal position selection in Lifting Line Theory implementations. 

Keywords: Lifting Line Theory, Aerodynamics, Fourier Series, Spanwise Position Optimization, Solution 
Convergence 

1. Introduction 

The Lifting Line Theory (LLT) has been an essential part of aerodynamic analysis, providing a 
straightforward yet powerful method for determining the lift distribution on finite wings. Although 
considered a fundamental approach, LLT plays a crucial role in estimating vital aerodynamic coefficients 
such as the wing lift coefficient, induced drag coefficient, lift curve slope, and efficiency factors for both 
lift and drag. This theory's value becomes evident in the initial design stages of aircraft wings, where 
more advanced techniques like Computational Fluid Dynamics (CFD) are either computationally 
expensive or impractical due to time constraints. LLT allows engineers to perform quick evaluations of 
wing configurations, facilitating faster iterations and reducing the need for complex calculations during 
early-stage design processes. Despite its benefits, the accuracy of LLT depends heavily on how it is 
applied, particularly when the Fourier series is used to describe the circulation distribution along the wing 
span. 

Proposed by Prandtl in 1918, the lifting line theory has had several variations in later years. The 
Fourier series formulation of LLT, introduced by Glauert (1926) [1], simplifies the equations governing 
the wing’s aerodynamics by breaking them into a series of harmonics. This method reduces the 
complexity of solving the equations, turning them into a set of manageable algebraic expressions. In the 
equation, the angle 𝜃𝜃 represents the position on the wing. The distance from the wing root 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 for a 
half span of the wing is related to the angle 𝜃𝜃 by the equation 1; 

           𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑏𝑏
2

cos (𝜃𝜃)                                (1) 

The Fourier series form of LLT, as described by Anderson (2001) [2] , is as following equation 2: 
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𝛼𝛼(𝜃𝜃) = 4𝑏𝑏
𝑎𝑎0𝑐𝑐(𝜃𝜃)

∑ 𝐴𝐴ₙ sin𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1 + 𝛼𝛼(𝐿𝐿=0)(𝜃𝜃) + ∑ 𝑛𝑛𝑛𝑛ₙ sin𝑛𝑛𝑛𝑛

sin𝜃𝜃
𝑁𝑁
𝑛𝑛=1               (2) 

In this equation, α(θ) represents the geometric angle of attack at the spanwise position θ, b is the 
whole span of the wing, a0 is the 2D airfoil lift-curve slope, c(θ) is the chord length at position θ, 𝐴𝐴𝑛𝑛 
represents the Fourier coefficients, αL=0(θ) is the zero-lift angle of attack at position θ. 

The Fourier coefficients 𝐴𝐴𝑛𝑛 are determined by choosing N positions along the wing span to set up a 
system of N equations, with each corresponding to an angle θ. The way these positions are selected is 
critical as they directly affect the accuracy and convergence of the solution. If poorly chosen, the 
positions can lead to wrong results. 

Although the Lifting Line Theory has been extensively applied to various aerodynamic problems, 
there is a lack of comprehensive studies on how the selection of spanwise positions impacts the accuracy 
of the Fourier series solution. This article aims to fill this gap by providing detailed guidelines for 
choosing optimal positions in Fourier series calculations. Specifically, this paper will address: 

1) The optimal method for selecting positions in a 4-term Fourier series calculation to achieve 
accurate results. 

2) The effect of varying position distributions on the convergence behavior and accuracy of the 
calculated results in different scenarios. 

3) A certain position distribution for calculating the accurate result converged with the number of 
terms used in the Fourier series 

By addressing these issues, this study will provide valuable insights into how to improve the 
application of LLT, enhancing both its accuracy and efficiency. 

2. Related Work 

Prandtl’s pioneering work on the LLT in the early 20th century shed insight into the efficiency 
estimation of the finite wing. Instead of fading into obsolescence, LLT has continued to prove itself as a 
valuable and versatile tool for current aerodynamic research, helping to predict the optimal design in a 
variety of fields and applications. 

Although the original LLT was only applicable to wings with no sweep, no dihedral, and a high aspect 
ratio, nowadays, researchers have proposed LLT for complex wing geometries. As proposed by Phillips 
and Snyder [3], improved by Reid and Hunsaker [4], and finalized by Goates and Hunsaker [5], the modern 
version of LLT can be applied to a wing with arbitrary sweep, dihedral, and twist. This LLT can predict 
the efficiency of most wing configurations and can even be applied to wings with wingtips and winglets 
for design optimization. 

Apart from wings, LLT can also be used for wind turbine blade design. The LLT was also utilized 
within the actuator line model (ALM), which in turn is a numerical tool for describing lifting surfaces, 
such as wind turbine blades, in CFD calculations. Recent research attempted to reformulate LLT to more 
accurately capture the ALM, whose approximation error is related to the accumulation of shed vorticity 
from finite span lifting surfaces, and generalized it to handle drastic changes in chord down the blade [6]. 

LLT has also been extended to unsteady aerodynamic and aeroelastic analysis. An unsteady lifting-
line theory for camber morphing wings was introduced in 2018 by linking an unsteady lifting-line 
formulation with the Boutet and Dimitriadis aerodynamic theory for state-space aeroelastic modeling [7]. 

Most of the research relating to LLT, especially studies of the modern LLT, has raised the concern of 
how to choose the position distribution of the control points or the horseshoe vortex when applying the 
theory. The cosine clustering was proved to be efficient when applying the modern LLT. According to 
Phillips and Snyder [3], the straight wing can directly use the cosine clustering on the whole wing, having 
position concentration at the wingtip. However, since the theory was also designed for the swept wing, 
the slope of the chord line has a steep change at the root. As a result, the cosine cluster was used on each 
semispan, which led to concentration on both the wing tip and the wing root and formed a symmetric 
cosine clustering. The control point distribution is given by: 

𝑠𝑠𝑖𝑖
𝑏𝑏

= 1
4

{1 − 𝑐𝑐𝑐𝑐𝑐𝑐 [�𝑖𝑖𝑖𝑖
𝑛𝑛
� − ( 𝜋𝜋

2𝑛𝑛
)]},   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 

With 𝑠𝑠 being the distance from the wing root to the control point, 𝑛𝑛 being the total number of 
control points on a semispan. The optimal number of control points was proved to be 40 per half span. 
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Therefore, cosine clustering may also be beneficial in the Fourier series form of LLT. 

3. Methodology 

To evaluate the accuracy, the result of the wing’s induced drag efficiency factor was examined. The 
induced drag efficiency factor 𝛿𝛿 is a factor adding to the minimum induced drag coefficient calculated 
from the elliptical wing (𝐶𝐶𝐶𝐶

2

𝜋𝜋𝜋𝜋𝜋𝜋
). The calculation of the induced drag efficiency factor is given below in 

equation 3; 

𝐶𝐶𝐷𝐷,𝑖𝑖 = 𝐶𝐶𝐿𝐿
2

𝜋𝜋𝜋𝜋𝜋𝜋
(1 +  𝛿𝛿)                               (3) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛿𝛿 =  �𝑛𝑛(𝐴𝐴ₙ/𝐴𝐴1)2
𝑁𝑁

2

 

The results were obtained by using tapered wings with a symmetric airfoil and without geometric and 
aerodynamic twists. In equation 1, the 2D airfoil lift-curve slope 𝑎𝑎0 is assumed to be 2𝜋𝜋, and the angle 
of attack at zero lift 𝛼𝛼𝑙𝑙=0(𝜃𝜃) is zero for any 𝜃𝜃 due to the symmetric airfoil used. 

The first term at the right of the equation 1 which includes the wing span 𝑏𝑏 and the local chord 
length 𝑐𝑐(𝜃𝜃) at certain position 𝜃𝜃 can relate to the aspect ratio 𝐴𝐴𝐴𝐴 and taper ratio 𝜆𝜆 (the chord length 
at tip divided by the chord length at the root) by the following equation 4: 

      4𝑏𝑏
𝑎𝑎0𝑐𝑐(𝜃𝜃)

 =  (1+𝜆𝜆)𝐴𝐴𝐴𝐴
𝜋𝜋[(𝜆𝜆−1) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)+1]

                          (4) 

Matrix calculation is used to solve the 𝑁𝑁 equations. If {A} is the matrix containing the coefficient 
of 𝐴𝐴𝑛𝑛, 𝑋𝑋 is the solution matrix of 𝐴𝐴𝑛𝑛, and B is the column vector of the angle of attack, then there is 
{𝐴𝐴}[𝑋𝑋] =  [𝐵𝐵]. Since there is no geometric twist, the angle of attack is constant. This equation can be 
further rearranged into [𝑋𝑋]

𝛼𝛼
= {𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐴𝐴}[𝐵𝐵]

𝛼𝛼
, with [𝐵𝐵]

𝛼𝛼
 being the column vector of 1. [𝑋𝑋]

𝛼𝛼
 can be directly 

used to calculate the factor because the calculation only contains the division from of 𝐴𝐴𝑛𝑛 which is �𝐴𝐴1
𝐴𝐴𝑛𝑛
�. 

Therefore, the result is independent of the angle of attack. 

Two Python programs were used to achieve the three objectives described in the introduction. The 
first program is to draw the 3D plot indicating how the choosing of two out of four positions affects the 
result of the 4-term Fourier series. The 4-term Fourier series needs to apply four positions to form four 
equations, two of which are beforehand defined as the commonly used angles, such as 𝜋𝜋

2
 and 𝜋𝜋

3
. The 

other two positions were traded as two variables that range from 0 to 𝜋𝜋
2
 uniformly with a number of 50.  

The second program is to examine the convergent behavior of the results when applying different 
position distributions. The maximum number of terms to calculate, the aspect ratio, and the taper ratio of 
the wing are input to the program. Then the program will give the scatter plot indicating each result of 
the induced drag efficiency factor calculated using each term number, which can show how and when 
the result becomes convergent or divergent as the term number increases.  

The position distributions can be divided into three categories, which are tightly arranged in the tip, 
tightly arranged in the root, and a uniform distribution of distance. The distributions are given by different 
functions whose independent variable 𝑥𝑥 is proportional to the point number in the sequence, and the 
dependent variable 𝑦𝑦 ranges from 0 to 1 and is the nondimensional distance from the wing root, which 
is the distance from the wing root 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 divided by the half wing span 𝑏𝑏

2
. As shown in Figure 1a, the 𝑥𝑥 

values are arranged from 0 to the 𝑥𝑥 value where the corresponding 𝑦𝑦 value is 1 or 0, and the intervals 
between the adjacent 𝑥𝑥 values are identical and equal to 1 divided by the total term number. The 𝑦𝑦 
value is calculated from the function by the corresponding 𝑥𝑥. Then, the angle 𝜃𝜃 indicating the position 
in the Fourier series is computed by the equation 𝜃𝜃 =  arccos(y). In this way, when 𝑦𝑦 varies from 0 to 
1, the 𝜃𝜃 from 𝜋𝜋

2
 to 0, the 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 varies from 0 to the half span, and the position moves from the wing 

root to the tip. 

The function of the category tightly arranged in the tip has a greater slope when approaching 𝑦𝑦 = 0 
which is the wing root, and has a smaller slope when approaching 𝑦𝑦 = 1 which is the wing tip. The 
functions of this category include 𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥)  (𝑥𝑥 = 𝜃𝜃 , uniform angle distribution), 𝑦𝑦 = 𝑥𝑥

1
𝑟𝑟 , 𝑦𝑦 =
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−𝑥𝑥𝑝𝑝 + 1, and 𝑦𝑦 = 1
𝑓𝑓

(−𝑒𝑒𝑥𝑥 + 1) + 1 where the constant r, p, and f are three factors that can control the 
slope of the function in the range of the 𝑥𝑥. In addition, the factors should all greater than 1. Figure 1b 
shows these four functions with the factor r=2, p=2, and f=6. 

The function’s slope of the tightly arranged in the root category is in the opposite way of the tightly 
arranged in the tip. The functions include 𝑦𝑦 = 𝑥𝑥𝑝𝑝 , and 𝑦𝑦 = 1

𝑓𝑓
(𝑒𝑒𝑥𝑥 − 1). The constants p and f also 

control the slope of the function. The last category is the uniform distribution of the distance using 𝑦𝑦 =
𝑥𝑥. 

In addition, the symmetric cosine distribution, which is identical to the cosine clustering mentioned 
before in the research of Phillips and Snyder [3], was also tested to check if this distribution is applicable 
in Fourier series LLT. This distribution has points tightly arranged in both the root and tip, while the 
middle-span is loosely distributed. The function for the symmetric cosine distribution is given by: 𝑦𝑦 =
1
2

{1 − 𝑐𝑐𝑐𝑐𝑐𝑐 [(𝑥𝑥) − ( 𝜋𝜋
2𝑛𝑛

)]}. 

Figure 2a and Figure 2b demonstrate how the position points are distributed on the semispan for 
different functions. The x-axis of the plot is the nondimensional distance from the wing root. Figure 2a 
shows the tip concentration and symmetric cosine distribution, while Figure 2b shows the root 
concentration and uniform distance distribution. 

Both programs applied the aspect ratio of 10 and the taper ratio of 0, 0.5, and 1 as examples to examine 
the result of the wing’s induced drag efficiency factor.  

 
Figure 1a: Functions with Variable Slopes Based on y Value for Tightly Arranged Positions 

 
Figure 1b: Functions Representing Slope Behavior for Tightly Arranged in Root Positions 
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Figure 2a: tip concentration and symmetric cosine distribution  

 
Figure 2b: root concentration and uniform distance distribution 

4. Results 

4.1 Position choosing for a 4-trem Fourier series 

The results derived from applying a 4-term Fourier series using fixed angles of 𝜋𝜋/2 and 𝜋𝜋/3, along 
with two varying angles, are presented below. In all the calculations, the aspect ratio (AR) is maintained 
at 10, and taper ratios are set at 0, 0.5, and 1, as shown in Figures 3a-f. 

Figure 3 presents 3D surface plots where the x and y axes represent the two varying spanwise position 
angles, while the z-axis displays the calculated induced drag efficiency factor (δ). The red points on the 
plot correspond to the validated reference results from Bridge's study (2005) [8] for each taper ratio at AR 
= 10. The yellow regions identify areas where the efficiency factor approaches the reference value (δ ≈ 
reference value ± 0.005). These regions demonstrate that specific configurations of the varying angles 
align with aerodynamically efficient solutions. The absence of result points along the diagonal line y = x 
occurs because this condition creates a mathematically singular system where two identical angles reduce 
the four-equation system to only three independent equations, making the 4-term Fourier series 
unsolvable. The yellow regions reveal critical patterns in position selection to obtain an accurate result: 
First, significant deviations from accurate results occur when both varying angles are very large or very 
small, either both approaching zero or both approaching π/2. The results may not be accurate when 
selecting values at the right side of the line 𝑦𝑦 = −𝑥𝑥 + 2.1. Second, the patterns support the observation 
that when one angle lies within the range 0.3 to 0.4 and the companion angle falls between 0.9 and 1.3, 
the results are mostly accurate in these three different taper ratio cases so this range may have a greater 
chance of generating accurate results. These angular ranges ensure balanced representation of root, mid-
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span, and tip flow physics so that accurate results can be generated. 

 
Figure 3a: 3D Surface Plot for 0 taper ratio Figure 3b: Top view of 3D Surface Plot for 0 taper ratio 

 
Figure 3c: 3D Surface Plot for 0.5 taper ratio  Figure 3d: Top view of 3D Surface Plot for 0.5 taper ratio 

 
Figure 3e: 3D Surface Plot for 1 taper ratio Figure 3f: Top view of 3D Surface Plot for 1 taper ratio 
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4.2 Convergent behavior of the results when applying different position distributions 

The convergence characteristics of Lifting Line Theory solutions exhibit substantial variation across 
three primary distribution categories: positions concentrated near the wing tip, positions concentrated 
near the wing root, and uniform distributions. Analysis reveals that root-concentrated and uniform 
distance distributions either fail to achieve convergence or produce extremely limited convergent regions, 
while tip-concentrated distributions demonstrate relatively better convergence properties. 

Root-concentrated distributions, characterized by mathematical functions exhibiting shallow 
gradients near the wing root (y = 0) and steep gradients approaching the tip (y = 1), consistently 
demonstrate poor convergence behavior. Representative functions include 𝑦𝑦 =  𝑥𝑥𝑝𝑝  and 𝑦𝑦 =
 �1
𝑓𝑓
� (𝑒𝑒𝑥𝑥 −  1) , where parameters p and f control the concentration intensity. Despite systematic 

parameter optimization, these distributions fail to establish sufficiently robust convergent regions for 
reliable engineering application. 

Figure 4a illustrates the convergence behavior for the 𝑦𝑦 =  𝑥𝑥𝑝𝑝 distribution with p = 2 and taper ratio 
λ = 1. The results demonstrate convergence initiation around the 10th Fourier term, where calculated 
efficiency factors approach the theoretical reference value. However, after this convergence zone, the 
solutions exhibit severe divergence characterized by unrealistically large efficiency factor values. This 
behavior stems from inadequate sampling of the critical tip region. 

Figure 4b presents results for the exponential root-concentrated function 𝑦𝑦 =  �1
𝑓𝑓
� (𝑒𝑒𝑥𝑥 −  1) with f 

= 6 and taper ratio λ = 1. Similar convergence patterns emerge, with solutions stabilizing near the 
reference value only in a small region before divergence to physically unrealistic magnitudes. The 
exponential concentration exacerbates the sampling imbalance, providing excessive resolution near the 
wing root while inadequately representing the aerodynamically critical tip region. 

Figure 4c demonstrates the complete convergence failure for the 𝑦𝑦 =  𝑥𝑥𝑝𝑝 distribution when taper 
ratio reduces to λ = 0 (triangular wing planform). The triangular geometry amplifies the negative effects 
of root concentration, as the zero chord length at the tip creates additional complexity. The combination 
of root-concentrated sampling and triangular platform produces persistent divergence without any 
identifiable convergent region, rendering this approach unsuitable for tapered wing analysis. 

Figure 4d shows the exponential root-concentrated distribution performance with taper ratio λ = 0.5 
and f = 6. The intermediate taper ratio fails to mitigate the fundamental sampling inadequacy, resulting 
in continued divergence without convergence establishment. This demonstrates that root-concentrated 
distributions are inherently incompatible with tapered wing geometries due to their failure to adequately 
represent tip flow physics. 

 
Figure 4 a 𝑦𝑦 = 𝑥𝑥𝑝𝑝 distribution with p=2 and taper ratio=1 
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Figure 4 b 𝑦𝑦 = 1
𝑓𝑓

(𝑒𝑒𝑥𝑥 − 1) distribution with f=4 and taper ratio=1 

 
Figure 4 c 𝑦𝑦 = 𝑥𝑥𝑝𝑝 distribution with p=3 and taper ratio=0 

 

Figure 4 d 𝑦𝑦 = 1
𝑓𝑓

(𝑒𝑒𝑥𝑥 − 1) distribution with f=4 and taper ratio=0.5 

For root-concentrated distribution, only when the taper ratio equals 1 among the three ratios, the 
results become convergent in a small region around the 10th term. As stated by Goates and Hunsaker [5], 
the vortex shedding happens more intensely near the wingtip. This might be the reason why the root-
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concentrated distribution generated inaccurate results, and more positions sampling should be conducted 
near the wing tip. 

The uniform distance distribution y = x provides equal physical spacing along the wing span. This 
distribution category exhibits convergence characteristics similar to root-concentrated methods but with 
marginally improved performance.  

Figure 5a presents the uniform distance distribution results for taper ratio λ = 1. The convergence 
pattern mirrors that observed in root-concentrated distributions, with stabilization around the 10th term. 
However, the convergent region demonstrates greater stability compared to root-concentrated methods, 
probably attributed to improved tip region sampling. 

Figure 5b illustrates the uniform distance distribution with taper ratio λ = 0.5. No obvious convergent 
region was shown in the figure, which further supports the idea that taper ratio 1 is more conducive to 
establishing a convergent region. 

 
Figure 5 a uniform distance distribution with taper ratio=1 

 
Figure 5 b uniform distance distribution with taper ratio=0.5 

The tip-concentrated distribution is more likely to generate a continuously convergent region, 
providing a certain result. The functions considered in this category include 𝑦𝑦 = cos (𝑥𝑥)  (𝑥𝑥 = 𝜃𝜃 , 
uniform angle distribution), 𝑦𝑦 = 𝑥𝑥

1
𝑟𝑟 , 𝑦𝑦 = −𝑥𝑥𝑝𝑝 + 1 , and 𝑦𝑦 = 1

𝑓𝑓
(−𝑒𝑒𝑥𝑥 + 1) + 1 . Among these, the 

uniform angle distribution stands out as the only function that ensures the results remain convergent 
continuously after the term number reaches 1000. Furthermore, the number of terms needed before 
convergence typically does not exceed 15, making it possible to achieve a result with decent accuracy. If 
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the lifting line theory is applied with more than 15 terms for precise results, or 10 terms for close 
approximations, the uniform angle distribution can be used without the concern of results diverging after 
reaching convergence. 

Figure 6a demonstrates the uniform angular distribution performance with taper ratio λ = 1. Following 
a brief initial adjustment within the first few terms, the solution rapidly converges to the theoretical 
reference value and maintains stability throughout the entire 1000-term analysis range.  

Figure 6b shows uniform angular distribution results for the challenging triangular wing case (λ = 0). 
Despite the geometric complexity introduced by the triangular platform, the solution maintains 
convergence stability after initial adjustment. This demonstrates the method's robustness across diverse 
wing geometries and validates its suitability for general engineering applications. The exceptional 
stability may result from the uniform angular distribution's preservation of the mathematical 
orthogonality properties inherent in Fourier series representations. Therefore, the uniform angle 
distribution can not only prevent generating an ill-conditioned coefficient matrix, but also have adequate 
sampling near the wing tip. Moreover, the reason for failing to reach a stable convergent result for other 
distributions (including the other tip-concentrated distribution) might lie in being unable to maintain the 
discrete orthogonality of the Fourier series, so that the distribution generates an ill-conditioned 
coefficient matrix, amplifies the error, and generates inaccurate results when solving the matrix X. 

Together, Figures 6a and 6b demonstrate that the uniform angle distribution is the most reliable 
method for ensuring convergence when applying the lifting line theory with more than 15 terms. The 
results remain stable and approach the reference value with multiple taper ratios, making it a suitable 
approach for accurate predictions without the risk of divergence. 

 
Figure 6 a uniform angle distribution with taper ratio=1 

 
Figure 6 b uniform angle distribution with taper ratio=0 
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For other functions in the tip-concentrated distribution category, which includes root functions, 
negative power functions, and negative exponential functions, the figures below (Figures 7a-g) 
demonstrate their different convergent behavior. 

 

Figure 7 a 𝑦𝑦 = 𝑥𝑥
1
𝑟𝑟 distribution with r=2 and taper ratio=0 

 

Figure 7 b 𝑦𝑦 = 𝑥𝑥
1
𝑟𝑟 distribution with r=3 and taper ratio=0 

 
Figure 7 c 𝑦𝑦 = −𝑥𝑥𝑝𝑝 + 1 distribution with p=2 and taper ratio=0.5 

For the root function 𝑦𝑦 = 𝑥𝑥
1
𝑟𝑟, when 𝑟𝑟 = 2, the results often fluctuate in the first 15 terms, with the 

amplitude of these fluctuations gradually decreasing as the term number increases, allowing the results 
to approach a stable result that is close to the reference value. However, after about 50 terms, the results 
begin to fluctuate again, and the fluctuations grow, eventually causing the results to diverge to very large 
values.  
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However, when increasing or reducing the root factor r, the result is not likely to converge, and it 
fluctuates around the reference value with a relatively large amplitude, as indicated in Figure 7b.  

For the negative power function 𝑦𝑦 = −𝑥𝑥^𝑝𝑝 + 1, when choosing 𝑝𝑝 = 2, the result for the three tested 
taper ratios becomes convergent in a similar manner as the uniform angle distribution, but the results 
quickly increase and become divergent after 60 to 70 terms, as shown in Figure 7c. When the factor p is 
greater or less than 2, the results fluctuate around the reference value in the first several terms. The 
fluctuation becomes more intense as the factor p gets away from 2. Figure 7d. demonstrates the 
fluctuation when factor p=3 and taper ratio=0.5.  

 
Figure 7 d 𝑦𝑦 = −𝑥𝑥𝑝𝑝 + 1 distribution with p=3 and taper ratio=0.5 

For the negative exponential function 𝑦𝑦 = 1/𝑓𝑓 (−𝑒𝑒^𝑥𝑥 + 1) + 1, when f is less than 10, the results 
fluctuate with the fluctuating amplitude decreasing at first and increasing afterward, as shown in Figure 
7e. When f reaches 7, a region with steady convergent and accurate results appears, as shown in Figure 
7f. When f increases from 7 to 10, the convergent region shrinks, and when the factor f is larger than 10, 
the convergent region begins to fluctuate, and the results after the convergent region climb to very large 
values, as demonstrated in Figure 7g, whose factor f equals 15 with the taper ratio as 0.5. 

These observations in Figures 7a-g highlight how different tip-concentrated distributions and 
variations in the parameters r, p, and f influence the convergence and stability of the results. While some 
values of these parameters, such as r=2, p=2, or f=7, lead to stable convergence, many of the other values 
cause the results to fluctuate excessively and diverge, preventing long-term stability. The choice of the 
functions as well as the parameters both play a crucial role in determining whether a function will produce 
consistent, convergent results or whether it will diverge to large values. 

 

Figure 7 e 𝑦𝑦 = 1
𝑓𝑓

(−𝑒𝑒𝑥𝑥 + 1) + 1 distribution with f=5 and taper ratio=0 

A supplementary experiment was conducted for the symmetric cosine distribution. The results 
indicated that this distribution is not as robust as the uniform angle distribution, though these distributions 
are both related to cosine clustering. As shown in Figure 8a, the results converged to the reference value 
in a small region and diverged before the 30th term when the taper ratio equals 1. For a taper ratio equal 
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to 0.5, as shown in Figure 8b, the results failed to converge, but hovered around the reference value 
before the 10th term, after which the results diverged. This unalignment between the modern LLT and 
the current study for whether the symmetric cosine distribution can obtain decent results may be because 
the modern LLT does not apply the Fourier series form of the LLT. 

 

Figure 7 f 𝑦𝑦 = 1
𝑓𝑓

(−𝑒𝑒𝑥𝑥 + 1) + 1 distribution with f=7 and taper ratio=0.5 

 

Figure 7 g 𝑦𝑦 = 1
𝑓𝑓

(−𝑒𝑒𝑥𝑥 + 1) + 1 distribution with f=15 and taper ratio=0.5 

 
Figure 8 a Symmetric cosine distribution with taper ratio=1 
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Figure 8 b Symmetric cosine distribution with taper ratio=0.5 

5. Conclusion 

This investigation established the fundamental importance of choosing proper spanwise position 
selection in determining computational accuracy and solution stability within Lifting Line Theory 
implementations in Fourier series form. The systematic analysis across different position distributions 
revealed critical findings that advance the practical application of this classical aerodynamic theory in 
modern computational environments. 

The selection of evaluation points along the wing span emerges as a decisive factor in achieving 
accurate aerodynamic predictions. For 4-trem Fourier series with two position angles fixed as 𝜋𝜋/2 and 
𝜋𝜋/3, computational experiments demonstrated that substantial solution errors manifest when two varying 
angles simultaneously approach the same extreme domain boundaries, either both approaching zero or 
the upper limit of π/2. Conversely, optimal accuracy consistently emerged when one position angle 
occupied the range 0.3 to 0.4 radians while the companion angle fell within 0.9 to 1.3 radians. This 
specific configuration ensures balanced representation of root, mid-span, and tip flow physics while 
maintaining favorable coefficient matrix conditioning essential for numerical stability across all tested 
wing geometries. 

The distinct convergence behavior for different position distribution categories revealed performance 
disparities that fundamentally impact the practical utility of Lifting Line Theory applications. Uniform 
angular distribution methodology emerged as the superior approach, consistently achieving robust and 
fast convergence across all examined wing geometries and maintaining solution stability throughout 
extended Fourier series expansions exceeding 1000 terms. This method's exceptional performance stems 
from its preservation of mathematical orthogonality properties fundamental to Fourier series 
representations, resulting in well-conditioned coefficient matrices and proper sampling of 
aerodynamically critical wing regions. 

Root-concentrated and uniform distance distributions demonstrated consistently poor convergence 
characteristics, typically producing either complete divergence or limited convergence windows 
insufficient for reliable engineering application. Root-concentrated arrangements failed because they 
oversample regions of gradual circulation change while inadequately representing the critical tip region 
where vortex shedding is intensive. The uniform distance approach showed marginal improvement over 
root-concentrated methods with larger convergent regions. These distribution methods become 
particularly problematic for tapered wing configurations, where taper ratios of 0.5 and 0 consistently 
prevented convergence establishment. 

The practical engineering implications of these findings extend beyond theoretical interest to direct 
design applications. The identified optimal angle ranges and distribution provide engineers with 
quantitative criteria for position selection that enhance both computational accuracy and efficiency, 
offering immediate practical value for aerospace engineers conducting preliminary wing design analysis. 
The uniform angle distribution method proves particularly valuable for iterative design processes where 
rapid yet accurate aerodynamic assessment capabilities are essential for efficient configuration evaluation. 
While this study employed simplified wing geometries characterized by constant taper ratios and 
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symmetric airfoils, the research opens pathways for exploring complex wing configurations, including 
swept planforms. 
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