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Abstract: Grape cultivation is affected by a variety of diseases and pests. Addressing the issues of 
insufficient labeled samples in existing grape leaf disease and pest identification models and limited 
generalization capability of the networks, this paper proposes a grape leaf disease and pest detection 
method assisted by image style transfer. During the preprocessing stage, gamma correction is used to 
reduce the impact of lighting variations in the real environment on grape leaf image detection. In the 
data augmentation phase, an improved cycle generative adversarial network (CycleGAN) is employed, 
adding a category loss to incorporate category labels during the generator's training process. Category 
label information for grape diseases and pests, along with images created by the generator, are input 
into the discriminator. This converts samples of original healthy grape leaves from various growth stages 
into samples that represent affected regions, enriching the data augmentation for image samples input 
into the detection network and increasing the variety of the samples. In the grape leaf image detection 
process, a visual attention mechanism module is introduced into the Backbone structure of YOLOv8 to 
optimize the original feature extraction network. This module assigns and dynamically adjusts different 
attention weights to the diseased and pest-infested areas, thus augmenting the salience of grape leaf 
disease features against the complete background of the leaf. Experimental results show that the 
improved detection algorithm achieves a 4% increase in accuracy and a 7.1% increase in recall rate on 
the test set for grape leaf diseases and pests compared to the baseline algorithms, providing a foundation 
for the selection of pesticide usage in the development of smart agriculture. 

Keywords: Grape Leaf Pests and Diseases, Light Correction, Style Transfer, Attention Mechanism, 
Yolov8 Algorithm 

1. Introduction 

Currently, grapes have become an important crop among agricultural products and are widely planted 
in many countries and regions around the world. In China, the planting area and yield of grapes are both 
quite considerable. According to the 2023 Global Wine Report data released by the International 
Organization of Vine and Wine (OIV), as of 2022, there is a global grape planting area of 7.3 million 
hectares. During the cultivation of grapes, grape diseases and pests are one of the significant challenges 
faced, and the prevention and control of grape diseases and pests have a significant impact on grape yield 
and quality. 

In recent years, with the continuous development of deep learning technology, automated detection 
methods for pests and diseases based on computer vision have been widely studied and applied. Xin He 
et al. adopted the Multi-Scale ResNet method to identify grape leaf diseases, employing a novel approach 
to explore the fine-grained recognition problem of crop diseases. They used MaskR-CNN to obtain leaf 
information and applied multi-scale convolution to enhance the identification rate, ultimately achieving 
an accuracy of 90.83%[1]. Wenjuan Guo et al. have employed the Squeeze-and-Excitation Networks, 
Efficient Channel Attention, and Convolutional Block Attention Module to introduce attention 
mechanisms into the Fast Region-based Convolutional Neural Network, YOLOx, and Single Shot 
Multibox Detector, enhancing vital features and weakening irrelevant ones to maintain the model's real-
time performance and improve the model's detection accuracy[2]. Ji M et al. proposed a United Model 
based on a comprehensive method that integrates multiple convolutional neural networks architectures, 
which by combining multiple CNNs, is capable of extracting complementary discriminative features for 
the recognition of four types of grape leaf diseases, achieving an accuracy rate of 99.17%[3]. However, 
the dataset used in the experiment has a uniform background, which means that this method is not suitable 
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for the detection of diseases and pests with complex backgrounds. Although progress has been made in 
the detection of grape diseases and pests using deep learning, there are still challenges and issues to 
contend with. Due to the diversity of grape diseases and pests, current studies often involve images with 
single-background and individual diseased leaves, which to some extent limits the network's 
generalization ability. Different grape varieties may exhibit different disease and pest characteristics due 
to varying growth environments and stages, leading to insufficient labeled samples. Thus, optimizing 
network structures and datasets to achieve high-quality, accurate detection of uneven grape leaf disease 
samples poses a more challenging task for the current technology. 

To address the issues mentioned above, this study takes three common grape leaf diseases – black rot, 
black measles, and leaf blight – as the research subjects. Building on the standard YOLOv8 algorithm, it 
proposes a grape leaf disease and pest detection method aided by image style transfer to enhance the 
model's generalizability under complex backgrounds. The method first employs gamma correction for 
light preprocessing before feeding images into the detection network, reducing the impact of lighting 
variations in actual grape plantation environments on the detection of grape leaf images. Addressing the 
complexity of actual grape plantation scenes and the shortage of training samples for diseases and pests 
in different varieties at different growth stages, an improved CycleGAN is utilized. By adding a category 
loss and incorporating category labels during the training process of the generator, the model feeds both 
generated images and grape disease and pest category label information into the discriminator. It 
transforms original healthy grape leaf samples at various growth stages into samples of affected areas, 
augmenting the input data for the detection network and increasing sample diversity. To improve the 
accuracy of identifying and distinguishing between affected and healthy regions on grape leaves, a visual 
attention mechanism module is introduced into the backbone structure of YOLOv8. This enhancement 
optimizes the existing feature extraction network by assigning and dynamically adjusting different 
attention weights to pest and disease areas, thereby increasing the prominence of grape leaf disease 
features against the complete leaf backgrounds. 

2. Correlation Theory 

2.1 Overview of YOLOv8 

The YOLO (You Only Look Once) object detection algorithm is an end-to-end, single-stage detection 
algorithm predicated on the division of an image into multiple grids, with predictions for object detection 
being made in each individual grid. In this paper, the latest YOLOv8 model from Ultralytics, which was 
released in January 2023, is employed. It is built upon the successful foundation of previous YOLO 
versions and introduces new features and improvements to further enhance performance and flexibility. 
YOLOv8 introduces a state-of-the-art (SOTA) architecture, offering object detection networks with 
resolutions of P5640 and P61280, in addition to a YOLACT-based instance segmentation model. In 
comparison to YOLOv5, the YOLOv8 algorithm substitutes the C3 structure in the backbone and neck 
with a more gradient-rich C2f structure, and it tailors the channel count to different scale models instead 
of applying a uniform parameter set across all models. This considerably enhances the algorithm's 
efficiency. In the head portion, YOLOv8 has adopted the contemporary decoupled head structure, 
segregating the classification and detection heads and transitioning from Anchor-Based to Anchor-Free 
methodologies. With respect to loss computation, YOLOv8 employs the Task Aligned Assigner strategy 
for the assignment of positive samples and integrates the Distribution Focal Loss. The training data 
augmentation incorporates the operation of disabling the Mosaic augmentation in the last 10 epochs, 
borrowed from YOLOX, resulting in an effective improvement in accuracy. 

2.2 Overview of Image Style Transfer 

Image Style Transfer, a subdivision within the realm of computer vision, represents an image 
processing methodology whereby the semantic content of an image is rendered through divergent styles. 
This technique allows for the transposition of one image's style onto another, thereby engendering images 
adorned with variegated artistic styles, coloration methods, or textural attributes [4-5]. Early methods of 
image style transfer primarily relied on optimization techniques, such as minimizing a loss function to 
match the content and style features of an image. Classic methods for image style transfer include "Neural 
Style Transfer" proposed by Gatys et al., which utilizes convolutional neural networks to extract image 
features and achieves image style transfer by minimizing both content loss and style loss[6-7]. With the 
emergence of Generative Adversarial Networks (GAN), image style transfer has been significantly 
improved. CycleGAN, proposed by ZhuJY et al. as a classic style transfer algorithm, uses two 
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unidirectional GANs to form a cyclic GAN, which retains key information in the images and solves the 
problem of requiring paired training data in image style transfer[8]. It has strong application value in fields 
such as film and television production and style design. The architecture of the CycleGAN algorithm is 
illustrated in Figure 1. 

 
Figure 1: CycleGAN algorithm structure 

3. Grape Pest and Disease Detection Algorithm Based on Style Transfer Assistance 

The focus of this study revolves around the disease and pest infestation of grape leaves throughout 
their entire lifecycle. The analysis primarily examines three prevalent grape leaf diseases: black rot, black 
measles, and leaf blight. The datasets for each of these grape leaf diseases, as well as for healthy leaves, 
are depicted in Figure 2. 

 
Figure 2: Data set of each grape leaf disease and healthy leaf 

3.1 Experimental Data Acquisition 

This study is applied to intelligent pesticide spraying vehicles in vineyards, and the dataset for 
detecting targets consists of two parts. The first part includes 1,000 images each of grape black rot, black 
measles, and leaf blight publicly available from Baidu Paddle Paddle; the second part comprises 3,000 
images of healthy grape leaves collected from the field at various growth stages. After data augmentation, 
a total of 2,000 images each for black rot, black measles, and leaf blight, as well as 2,000 images of 
healthy grape leaves, were input into the target detection network. These images were divided into a 
training set of 5,600 images, a test set of 1,600 images, and a validation set of 800 images, based on a 
ratio of 7:2:1. The image size was scaled to 256×256, and the Imglabel software was used to annotate 
the regions with grape leaf diseases in the images. 

3.2 Adaptive Light and Dark Light Image Preprocessing Based on γ Correction 

During the detection of grape leaf images, the complex background of the vineyard environment and 
the uneven lighting conditions in the captured grape leaf images result in problems such as variations in 
brightness, contrast, and color in the grape leaf images that need to be detected. This leads to an increased 
rate of false detection of grape leaf diseases and pests by the model. To better extract image features and 
address this challenge, γ (gamma) correction is used to preprocess the input images for lighting conditions. 

Gamma correction is a common image processing technique that modifies an image's brightness and 
contrast by adjusting its gamma value, making the image clearer and more vivid. The higher the gamma 
value, the lower the brightness and the higher the contrast of the image. Before applying gamma 
correction, image pixel intensities must be scaled to the range of [0, 1.0] to ensure the corrected image 
results are accurate and stable. Gamma correction is also known as power-law transformation and can be 
utilized in various image processing scenarios, such as image enhancement, color correction, and medical 
image processing, among others. In gamma correction, the transformation of pixel values follows a 
formula expressed as Formula 1. 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 6, Issue 12: 70-78, DOI: 10.25236/AJCIS.2023.061208 

Published by Francis Academic Press, UK 
-73- 

out inV V γ=                                     (1) 

In the formula, inV  is the pixel value of the input image, and outV  is the pixel value of the output 
image. γ is the correction parameter, which is usually between 0.1 to 1.0.  

The larger the value of gamma, the more the details in the dark areas of the image will be enhanced, 
and the smaller the value of gamma, the more the details in the bright areas of the image will be enhanced. 
As can be observed from the comparison in Figure 3, gamma correction can normalize grape leaf images 
with varying brightness to a balanced state, thus enhancing the accuracy of the models in detecting 
diseases and pests in grape leaves. 

 
Figure 3: Grape leaf images before and after light pretreatment 

3.3 Style Transfer Based on the Improved Cyclic Generative Adversarial Network (CycleGAN) 

The number of image samples of grape leaves with diseases and pests is limited. Before inputting the 
dataset into the detection network, the images are subjected to transformations such as translation, 
rotation, scaling, and flipping to generate multiple images with different perspectives and variations, 
thereby increasing the diversity of the samples. This improves the training effect of the target detection 
algorithm and enhances the robustness of the model. However, traditional data augmentation methods 
have the drawback of reducing data correlation, which may make it difficult for models to generalize in 
real-world scenarios. Inspired by image style transfer techniques, this paper adopts CycleGAN to perform 
data augmentation on the image samples input into the detection network. CycleGAN mainly transfers 
color and texture changes, but due to the complex background variation in photos taken by cameras in 
actual grape plantations, variations in grape leaf sizes, random occlusions, and other issues, it can easily 
confuse background with target features. Therefore, this paper improves the original loss functions by 
adding a category loss on top of the existing adversarial loss and cycle consistency loss. During the 
training process of the generators, the semantic meaning of the task is emphasized by introducing 
category labels into the discriminator along with the generated images, enhancing the precision of the 
transformation from healthy leaves to diseased leaves. 

The style transfer model in this paper consists of two generators (G, F) and two adversarial 
discriminators (DX, DY). The generator that converts images of healthy grape leaves to images of grape 
leaves with diseases and pests is called G, and the one that converts images from diseased to healthy 
leaves is called F. The discriminator that determines whether an image is of a healthy grape leaf is called 
DX, and the one that determines if an image is of a grape leaf with diseases and pests is called DY. 

The generators G and F consist of an encoder and decoder. The encoder uses three convolutional 
layers to extract different features of grape leaves, followed by six residual blocks that further extract 
image information while preserving the input data features. The decoder then performs upsampling using 
two transposed convolutions, followed by a convolutional layer, and the resulting image matrix is 
activated by the Tanh function to produce the final output image. Instance normalization is employed 
during the training of the generators to normalize the features and weights extracted from each image, 
ensuring that the generators produce more stable feature representations for each instance. The generative 
network of the style transfer model is shown in Figure 4. The adversarial discriminators DX and DY use 
a PatchGAN structure to assess the difference between the generated images and the real images of the 
target domain. 
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Figure 4: Generation network of style migration model 

The original loss function of CycleGAN is composed of an adversarial loss and a cycle consistency 
loss. The adversarial loss is a binary classification loss based on discriminators, which primarily controls 
the generator to produce images that are more realistic to the target domain. The cycle consistency loss 
uses symmetrical cyclic constraints to maintain the consistency between the original image and the 
regenerated (cyclic) image, guiding the generator to produce images as close as possible to the input 
image. For grape leaves, thoroughly learning the detail features of the diseased areas and the background 
characteristics is key to generating high-quality images. To better learn local features of the input image, 
a category loss is introduced during the training of generators G and F, which brings in category labels. 
This allows generated images to be trained under the target domain's supervisory signals and submits 
them to discriminators DX and DY along with the generated images. When training discriminators, the 
real images are trained under the supervisory signal of the source domain, and the cross-entropy loss 
function is used to calculate the difference between the category predictions of the generated images and 
the real category of the target domain images. The generator minimizes the cross-entropy loss to improve 
the categorical accuracy of the images. The category loss is shown in Equation 2. 

class 1
log( )C

c cc
L y p

=
= −∑                                (2) 

Herein, C  is the number of categories of grape leaf diseases and pests, cy  represents the value of 
the c-th category, and cp  represents the probability of the c-th category as predicted by the model. 

Therefore, the total loss function of the network is represented by Equation 3. 

1 2= ( , , , ) ( , , , ) ( , )GAN Y GAN X cycle classLOSS L G D X Y L F D Y X L G F Lλ λ+ + +          (3) 

1λ  and 2λ are non-negative hyperparameters that are used to adjust the different impacts of loss on 
the overall effect. 

After training, this paper transformed 3000 images of healthy grape leaves into 1000 images each 
with features indicative of black rot, black measles, and leaf blight. The grape leaf images augmented 
with disease and pest features through image style transfer are presented in Figure 5. 

 
Figure 5: Image style transfer expanded grape leaf pests and diseases image 

3.4 Visual Attention Module is Introduced in YOLOv8 Backbone Network 

In actual grape vineyards, distinguishing the texture and color information of disease spots on 
diseased grape leaves is challenging due to the complex and irregular backgrounds of the leaves. Some 
diseased grape leaves may only have a few spots, making direct detection quite difficult.To enhance the 
detection capability of disease spots on diseased grape leaves, a visual attention mechanism is introduced 
into the backbone structure of the YOLOv8 model, assigning and dynamically adjusting different 
attention weights to the pest-affected areas, saving computational resources, enhancing the algorithm’s 
feature extraction of disease targets, and strengthening the model's learning capacity. 

In the YOLOv8 model, the convolutional layers in the backbone structure are responsible for 
extracting low-level and mid-level features from the image. By adding a Spatial Attention module, which 
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uses positional weights to produce a spatial attention feature map, the model can focus on regions of the 
leaf that may have pests or diseases, emphasizing features related to those regions. As the depth of the 
network increases, the feature extraction capability of the backbone network becomes insufficient, 
leading to an inability to effectively integrate high-quality contextual information, thus reducing the 
model’s detection precision. The Non-local module adjusts the importance of different positions by 
computing the similarity between various positions in the input image. This helps the model to capture 
global contextual information in the image by modeling long-range dependencies between pixels and 
locating abnormal areas on the leaf, thereby enhancing the accuracy of pest and disease detection. The 
improved YOLOv8 algorithm framework is depicted in Figure 6. 

 
Figure 6: Improved yolov8 algorithm framework 

The Spatial Attention module is a mechanism for attention that is used for computer vision and image 
processing tasks. It adjusts the importance of each pixel in an input image by learning positional weights 
[9]. By performing element-wise multiplication of the positional weights and the original feature map, the 
module can focus its attention on key areas of the image, particularly those areas that are relevant to the 
task. In order to calculate the attention weights, the input feature map undergoes a convolutional 
operation that transforms it into a lower-dimensional tensor, reducing the number of channels to one to 
obtain positional weights. Subsequently, a convolutional layer further transforms the converted feature 
map to obtain the corresponding weights for each position, as shown in Equation 4, where X is the 
transformed feature map, and f represents the convolutional operation. To ensure that the weight values 
fall within a reasonable range, a softmax operation is performed on the weights to ensure that each 
position's weight is between 0 and 1 and that the sum is 1. The normalization process is seen in Equation 
5, where W is the weight vector. Finally, the normalized weights are element-wise multiplied with the 
original feature map to produce the weighted feature map. The feature weighting process is shown in 
Equation 6, where X is the original feature map, and Y is the feature map after weighting. 

= ( )W f X                                     (4) 

i

exp( )max( )
exp( )i

Wsoft W
W

=
∑                               (5) 

soft max( )Y X W=                                 (6) 

Non-local is a module or method capable of capturing long-range dependencies between pixels in an 
image by directly capturing remote dependencies through computing interactions between any two 
positions, constructing a convolutional kernel with the same size as the feature map to capture the global 
interaction and contextual information between pixels, achieving non-local interactions among pixels. 
This global dependency is beneficial for handling inter-object relationships, motion representation across 
large spans, etc.[10]. Its representation is shown in Equation 7. 

1 ( , ) ( )
( )i i j jj

y f x x g x
C x ∀

= ∑
                           (7) 

In this context, ix  represents a position in the input feature map, where i denotes the output 
position, such as spatial, temporal, or spatio-temporal index. Its response should be computed by 
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enumerating over j . The functions f g，  are used to compute similarity and fusion respectively. The 
term ( )C x is a normalization factor used to scale the similarity coefficient. The final output y is obtained 
after normalizing with the response factor ( )C x . 

4. Experimental Results and Analysis 

4.1 Experimental Environment 

The algorithm presented in this paper is implemented within the deep learning framework, Pytorch, 
utilizing hardware comprising a single NVIDIA GeForce RTX 2080Ti GPU with 16GB of memory, and 
running on the Ubuntu18.04 operating system. The algorithm development is based on the Python 
language. The network model parameters used in the experiments in this paper are as follows: Batch_size 
is set to 64, the weight decay factor is 0.0001, the number of training iterations is set to 300, and the 
initial learning rate is 0.001. 

4.2 Evaluation Index 

The evaluation metrics adopted in the experiments of this paper for the detection of grape leaf diseases 
and pests include detection accuracy (the proportion of samples that are correctly predicted as positive 
out of the total samples predicted as positive, Precision, P), mean Average Precision (mAP), and recall 
rate (the proportion of the true positive samples correctly predicted out of the original samples, Recall, 
R). 

TPP
TP FP

=
+                                      (8) 

R TP
TP FN

=
+                                      (9) 

1

1 C

i
i

mAP AP
C =

= ∑
                                   (10) 

Where TP (True Positives) represents the number of images that have disease features and the disease 
type is correctly identified, FP (False Positives) represents the number of images that have disease 
features but the disease type is misidentified, and FN (False Negatives) represents the number of images 
that actually have disease features but are not recognized as having a disease. 

4.3 Analysis of Experimental Results 

To facilitate the analysis of the improvement effects, the paper designs ablation studies to verify the 
effectiveness of each enhancement, with the results shown in Table 1. 

Table 1: Ablation study 

Serial number Image ray 
preprocessing Style transfer model Visual attention 

module mAP/% 

1 × × × 89.3 
2 √ × × 89.8 
3 × √ × 91.6 
4 × × √ 91.4 
5 √ √ × 92.3 
6 √ × √ 91.7 
7 × √ √ 95.6 
8 √ √ √ 96.4 

Using the grape leaf diseases and pests dataset employed in this paper, the algorithm presented herein 
was compared with mainstream detection network models such as Faster R-CNN and YOLOv5, with the 
results displayed in Figure 7. 

To verify that preprocessing the lighting of grape leaf images can improve the detection rate of 
diseased grape leaves, this paper selected grape leaf images taken under the poor lighting conditions of 
a cloudy day. The comparison results of detection before and after light preprocessing are shown in 
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Figure 8, with an average increase of about 3% in the detection confidence for grape diseases. 

 
Figure 7: Detection results of grape pests and diseases by different algorithms 

 
Figure 8: Detection results of grape leaf pests and diseases before and after image preprocessing 

In order to prove that using style transfer to augment dataset samples can improve the detection rate 
of diseased grape leaves, this paper compared it with models created using traditional data augmentation 
techniques for images, such as translation, rotation, scaling, and flipping. The comparison results are 
demonstrated in Figure 9, with an average increase of approximately 4% in the detection confidence for 
grape diseases. 
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Figure 9: Detection results of grape leaf pests and diseases by different data enhancement methods 

5. Conclusion 

This paper investigates the detection of three common diseases and pests affecting grape leaves, 
including black rot, black measles, and leaf blight. By improving the cycle generative adversarial network 
and combining publicly available images of black rot, black measles, and leaf blight from Baidu 
PaddlePaddle with images of healthy grape leaves collected in the field from various growth stages, a 
comprehensive grape disease and pest target dataset was constructed. With modifications to the YOLOv8 
algorithm, a visual attention mechanism was introduced in the Backbone structure, giving and 
dynamically adjusting different attention weights to diseased and pest-ridden regions, thereby enhancing 
the feature extraction capabilities of the algorithm for disease targets. The experimental results show that 
compared to the YOLOv8 algorithm, the improved network model has better adaptability under different 
conditions of grape leaf diseases, achieving an average precision of 96.4% for grape leaf disease and pest 
detection and an average detection speed of 30 FPS. This meets the real-time detection requirements of 
intelligent pesticide sprayers in vineyards. Future work can focus on the grading research of the severity 
of grape leaf diseases and pests, providing an optimal solution for the selection of pesticide dosage for 
smart pesticide sprayers.  
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