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Abstract: In traditional knowledge distillation, a significant capacity gap between the teacher and 
student models often leads to information loss and performance degradation. To address this issue, this 
study proposes a two-stage knowledge distillation framework. In the first stage, a progressive distillation 
strategy is employed, transferring knowledge from RoBERTa to BERT and then to BiLSTM, gradually 
reducing model complexity while sharing model weights to enhance knowledge transfer. In the second 
stage, a Conditional Generative Adversarial Network (CGAN) is introduced, utilizing the first-stage 
student model’s output as a conditional input for adversarial training, guiding optimization between 
RoBERTa and BiLSTM to improve the classification performance of the student model. Additionally, 
zscore normalization is applied to ensure that the student model focuses on relative relationships between 
classes rather than absolute logits values, effectively mitigating performance bottlenecks caused by the 
capacity gap. Experimental results on multiple NLP datasets demonstrate that the proposed method 
significantly enhances the classification performance of the student model, achieving 85%-90% of the 
teacher model’s performance, while substantially reducing model parameters, outperforming traditional 
knowledge distillation methods. 

Keywords: Knowledge Distillation, Genarative Adversatial Networks, Text Classification, Artificial 
Intelligence 

1. Introduction 

Knowledge distillation, proposed by Hinton et al.[1], is a model compression technique that trains a 
light weight student model to mimic a more powerful teacher model, aiming to maintain model 
performance while reducing computational costs. However, traditional knowledge distillation methods 
may suffer from information loss or performance degradation when handling complex tasks. For instance, 
when there is a significant capacity gap between the teacher and student models, the student model may 
fail to capture the intricate knowledge encoded in the teacher model’s outputs, leading to suboptimal 
distillation results. 

To address these challenges, this paper introduces a two-stage distillation framework designed to 
progressively reduce model complexity through phased distillation, enabling smoother knowledge 
transfer to the student model. Experimental results demonstrate that, compared to single-stage distillation, 
the two-stage approach allows the student model to acquire more comprehensive knowledge from the 
teacher model. Furthermore, by integrating a Conditional Generative Adversarial Network (CGAN)[2], 
the output of the student model from the first distillation stage is utilized to guide the optimization process 
in the second stage, further enhancing the student model’s classification performance. Experimental 
results show that the proposed method outperforms traditional single-stage distillation across multiple 
datasets. 

Additionally, to improve the student model’s ability to learn inter-class relationships, this paper 
employs logits normalization techniques. By applying the z-score function[3] to standardize the logits 
outputs of both the teacher and student models, the student model focuses on mimicking the relative 
relationships between categories in the teacher model rather than their absolute values. This approach 
effectively mitigates the capacity gap between the teacher and student models, preventing performance 
bottlenecks caused by the student model directly imitating the logits values. The main contributions of 
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this paper include: 

1) Proposing a Two-Stage Dual Knowledge Distillation Framework: Distilling from RoBERTa to 
BERT in the first stage, and then from BERT to BiLSTM in the second stage, progressively reducing 
model complexity. During the dual distillation process, model weights are shared to ensure effective 
knowledge transfer. Additionally, the z-score function is used to standardize the logits output by the 
teacher and student models, helping the student model focus on learning the class relationships predicted 
by the teacher model. 

2) Introducing a Conditional Generative Adversarial Network (CGAN): Leveraging the output 
of the first-stage student model (BiLSTM), the CGAN guides the adversarial optimization between 
RoBERTa and BiLSTM during the second-stage distillation, thereby enhancing the generalization ability 
and classification performance of the student model. 

3) Multi-Task Joint Optimization: Combining classification loss, adversarial loss, and distillation 
loss during the distillation process to further improve the expressiveness and classification effectiveness 
of the student model. 

2. Related Work 

2.1 Knowledge Distillation 

Knowledge distillation aims to transfer “dark knowledge” from a complex teacher model to a 
lightweight student model. By learning from the soft labels provided by the teacher model, the student 
can achieve better performance than training solely with hard labels. In the field of classification 
networks, knowledge distillation focuses on the transfer of soft label knowledge and intermediate feature 
layer knowledge. The solution emphasizes effective supervised learning and knowledge transfer from 
the teacher network to the student network. 

After the introduction of the traditional Knowledge Distillation (KD) method, researchers have 
explored various improvements based on its core ideas. For example, compared to the soft label output 
of traditional KD[1], Park W et al. proposed Relational Knowledge Distillation (RKD)[4], which focuses 
on the structural output information of the model. By transferring distance and angular information from 
the model’s outputs, RKD improves the measurement of distillation loss and achieves better distillation 
performance than KD. Zhao B et al. proposed Decoupled Knowledge Distillation (DKD)[5], which 
decomposes the classical KD loss into Target Class Knowledge Distillation (TCKD) and Non-Target 
Class Knowledge Distillation (NCKD). This method explains and verifies that TCKD is responsible for 
adjusting the difficulty level of training samples during knowledge transfer, while NCKD is the main 
component responsible for transferring soft label knowledge. 

Additionally, Seyed-Iman Mirzadehetal. Proposed Teacher-Assistant Knowledge Distillation(TAKD) 
[6], which introduces an assistant model between the traditional teacher model and student model to 
facilitate a smoother transition of ”knowledge” to the student model. Zheng Li et al. proposed Curriculum 
Temperature for Knowledge Distillation (CTKD)[7], which employs an adversarial learning module to 
predict sample temperature, adapting to varying sample difficulties. Shangquan Sun et al.[3] proposed 
logit distillation preprocessing to adaptively allocate temperature between the teacher and student models 
as well as across samples. 

2.2 Generate Adversarial Networks 

Generative Adversarial Networks (GANs) [8] are an innovative unsupervised learning framework 
inspired by the zero-sum game theory in game theory. The adversarial training concept of GANs allows 
the generator and discriminator to optimize their parameters through mutual competition, generating 
high-quality samples and demonstrating stronger feature learning and expressive capabilities compared 
to traditional algorithms. Through continuous iterative optimization, GANs eventually reach a Nash 
equilibrium, completing the modeling of the sample distribution. 

Researchers have proposed various variants to address issues such as training difficulties in GANs. 
Mirza M et al. introduced Conditional Generative Adversarial Nets (CGAN)[2], which adds constraints 
to the original GAN, addressing the problem of excessive freedom in GANs and guiding the network to 
generate samples in a desired direction. Zhu W et al. proposed Deep Convolutional GANs (DCGAN) [9], 
which combines Convolutional Neural Networks (CNNs) with GANs, ensuring the quality and diversity 
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of generated images. Zhao J B et al. proposed Energy-Based GANs (EBGAN) [10], which interprets GANs 
from an energy perspective, assigning low energy to real samples and high energy to generated samples, 
thereby improving model stability. 

Berthelot D et al. introduced Boundary Equilibrium GANs (BEGAN)[11], which does not directly 
estimate the distance between the generated distribution 𝑝𝑝 𝑔𝑔  and the real distribution 𝑝𝑝 𝑥𝑥 , but instead 
estimates the error distribution between the generated and real data distributions and optimizes the error 
distribution. Additionally, they proposed a hyperparameter that balances sample diversity and quality, as 
well as a method to measure model convergence. Mao X D et al. proposed Least Squares GANs 
(LSGAN)[12], which replaces the cross-entropy loss function of traditional GANs with a least squares 
loss function. This approach effectively addresses the issues of low-quality image generation and 
unstable training in traditional GANs. 

3. Methods 

3.1 Background 

3.1.1 Knowledge Distillation 

Knowledge distillation guides the training of the student model through the softened output labels 
from the teacher model and the true training labels. Specifically, knowledge distillation introduces the 
concepts of temperature 𝑇𝑇 and softened labels. Under the condition of parallel training with true labels, 
it achieves the transfer of soft label knowledge from the teacher network to the student network. For a 
given dataset 𝐷𝐷 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , the Kullback-Leibler (KL) [13]divergence loss is used to minimize the 
difference between the soft output probabilities of the student model and the teacher model: 

𝐿𝐿𝑘𝑘𝑘𝑘(𝑞𝑞𝑡𝑡,𝑞𝑞𝑠𝑠, 𝜏𝜏) = ∑ 𝜏𝜏2𝑁𝑁
𝑖𝑖=1 𝐾𝐾𝐾𝐾 �𝜎𝜎 �𝑞𝑞𝑖𝑖

𝑡𝑡

𝜏𝜏
� ,𝜎𝜎 �𝑞𝑞𝑖𝑖

𝑠𝑠

𝜏𝜏
��                             (1) 

Here, 𝑞𝑞𝑡𝑡  represents the soft labels generated by the teacher model, 𝑞𝑞𝑠𝑠  represents the soft labels 
generated by the student model, and 𝜎𝜎(⋅) denotes the Softmax function [14], which converts logits into 
probability distributions. 𝑇𝑇 is the temperature parameter used to scale the logits output by both the teacher 
and student models. When 𝑇𝑇 is small, the probability distribution output by the teacher model becomes 
sharper, approaching hard labels (where the probability of one class is close to 1, and the probabilities of 
other classes are close to 0). Conversely, when 𝑇𝑇  is large, the probability distribution output by the 
teacher model becomes smoother, with the probabilities of high-probability categories decreasing and 
the probabilities of low-probability categories increasing, causing the overall distribution to tend toward 
uniformity. 

3.1.2 z-score Function 

In traditional knowledge distillation, the student model is typically required to directly mimic the 
logits values output by the teacher model. However, due to the differences in parameter scale and 
capability between the teacher model and the student model, direct imitation may lead to performance 
degradation. To address this issue, this paper introduces the z-score [3] normalization method. By 
standardizing the logits, the student model is enabled to focus on learning the relative relationships 
between different categories in the teacher model, rather than the absolute values. 

     𝐯𝐯� = 𝐯𝐯−𝜇𝜇(𝐯𝐯)
𝜎𝜎(𝐯𝐯)

, 𝐳𝐳� = 𝐳𝐳−𝜇𝜇(𝐳𝐳)
𝜎𝜎(𝐳𝐳)                                                             (2) 

Here, given the output logits vector 𝐯𝐯 from the teacher model and the output logits vector 𝐳𝐳 from the 
student model, where 𝜇𝜇(⋅)  represents the mean of the logits vector and 𝜎𝜎(⋅)  represents the standard 
deviation of the logits vector. Through this standardization operation, the student model can ignore the 
absolute differences in logits and focus solely on the relative ranking and differences between categories 
in the teacher model.  

3.1.3 Conditional Generative Adversarial Nets 

Based on the original GAN, constraints are added to address the issue of excessive freedom in GANs. 
In this paper, the selected constraint 𝑦𝑦  is the true label. By incorporating 𝑦𝑦  as an additional input layer 
to both the discriminator and the generator, regulation is achieved. The output of the student model from 
the first stage is utilized as the conditional information for the CGAN. The generator attempts to produce 
logits that closely resemble those of the teacher model, while the discriminator distinguishes between the 
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real teacher logits and the generated logits. 

    min
𝐺𝐺

max
𝐷𝐷
𝑉𝑉(𝐷𝐷,𝐺𝐺) = 𝔼𝔼𝑥𝑥∼𝑝𝑝data(𝑥𝑥)[log𝐷𝐷(𝑥𝑥)] + 𝔼𝔼𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]        (3) 

Here, 𝐷𝐷 is the discriminator, 𝐺𝐺 is the generator, 𝑧𝑧 is the noise vector, and 𝑦𝑦 is the constraint condition. 
The objective function of the Generative Adversarial Network (GAN) is optimized by minimizing the 
generator 𝐺𝐺 and maximizing the discriminator 𝐷𝐷 through the adversarial loss 𝑉𝑉(𝐷𝐷,𝐺𝐺). Specifically, the 
discriminator 𝐷𝐷 aims to maximize the probability log𝐷𝐷(𝑥𝑥) of correctly identifying real data 𝑥𝑥 (sampled 
from the data distribution 𝑝𝑝data(𝑥𝑥)), while minimizing the probability log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))) of incorrectly 
identifying generated data 𝐺𝐺(𝑧𝑧) (sampled from the noise distribution 𝑝𝑝𝑧𝑧(𝑧𝑧)). The generator 𝐺𝐺, on the 
other hand, aims to minimize the discriminator’s probability log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))) of identifying generated 
data, thereby making the generated data closer to the real data distribution.  

3.2 Adversarial Distillation 

 
Figure 1: Distillation route 

Based on the above background, to address the challenges of knowledge distillation caused by the 
capacity gap between the teacher model and the student model, this paper proposes a two-stage 
distillation framework with two distillation steps. In each distillation step, the student model transitions 
from complex to simple architectures, specifically from RoBERTa to BERT, and then to BiLSTM. 
Additionally, a Conditional Generative Adversarial Network (CGAN) is introduced to guide the student 
model in optimizing its output through adversarial training(as shown in figure 1).Furthermore, to enable 
the student model to more effectively learn the relative relationships between categories rather than 
absolute values from the teacher model’s output, this paper incorporates z-score normalization on the 
outputs of each model, allowing the model to focus on the relative relationships between categories. 

As shown in figure 1,in the first stage of distillation, the process goes from RoBERTa to BERT, and 
then from BERT to BiLSTM, allowing the student model to progressively learn the soft labels from the 
teacher model while maintaining model performance. The logits output by each model are standardized 
using the z-score function, enabling the student model to focus on learning the relative relationships 
between categories. Specifically: 

RoBERTa uses only the classification loss 𝐿𝐿 𝐶𝐶 𝐸𝐸  [15]. 

BERT and BiLSTM use a weighted sum of the classification loss and the distillation loss (As shown 
in Equation (4)): 

𝐿𝐿total = 𝛼𝛼𝐿𝐿𝐶𝐶𝐶𝐶 + (1 − 𝛼𝛼)𝐿𝐿𝐾𝐾𝐾𝐾                                                         (4) 
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Here, 𝐿𝐿total represents the total loss of the task, which consists of the classification loss 𝐿𝐿𝐶𝐶𝐶𝐶 and the 

distillation loss 𝐿𝐿𝐾𝐾𝐾𝐾. The weight parameter 𝛼𝛼 is used to control the balance between the two, ensuring 
that the total loss effectively optimizes both the classification task and the distillation task. 

In the second stage of distillation, RoBERTa, BERT, and BiLSTM all load the weights of their 
corresponding models saved from the first distillation, achieving weight sharing between the two 
distillation stages. Meanwhile, a Conditional Generative Adversarial Network (CGAN) is introduced, 
using hard labels as conditional information to guide RoBERTa and BiLSTM in the second distillation 
to generate features different from the outputs of the first-stage student model BiLSTM, thereby avoiding 
redundant learning of ineffective information. By jointly optimizing the classification loss, distillation 
loss, and adversarial loss, the classification performance and generalization ability of the student model 
are further enhanced. Specifically: 

RoBERTa: Uses a weighted sum of the classification loss and the adversarial loss(as shown in 
Equation(5)): 

 𝐿𝐿total = 𝛽𝛽𝐿𝐿𝐶𝐶𝐶𝐶 + (1 − 𝛽𝛽)𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺  (5) 

Here, βcontrols the weight between the classification loss and the adversarial loss. 

BERT: Uses a weighted sum of the classification loss and the distillation loss, as shown in Equation(4). 

BiLSTM: Combines the classification loss, distillation loss, and adversarial loss, with the sum of their 
weights equal to 1, ensuring a balanced loss function(as shown in Equation(6)). 

 𝐿𝐿total = 𝛼𝛼𝐿𝐿𝐾𝐾𝐾𝐾 + 𝛽𝛽𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 + (1 − 𝛼𝛼 − 𝛽𝛽)𝐿𝐿𝐶𝐶𝐶𝐶  (6) 

Here, the weights of the three components are controlled by 𝛼𝛼 and 𝛽𝛽.  

4. Experiment 

4.1 Benchmark Datesets and Models 

We evaluate our proposed distillation approach on five natural language processing (NLP) benchmark 
datasets. These five datasets as shown in table 3 include:SST-2 [16], SST-5 [16], TREC-coarse[17], AG-
news[18],SUBJ[19],all of which come from HuggingFace Datasets or the official website of the dataset. 
We selected RoBERTabase[20] as the teacher model, BERT-base-uncased[21]as the intermediate model, 
and BiLSTM[22] as the student model. For the generative adversarial network, we employed a 
Conditional Generative Adversarial Network (CGAN). As a knowledge distillation framework, we 
compared our approach with vanilla Knowledge Distillation (vanilla KD) and Teacher-Assistant 
Knowledge Distillation (TAKD), achieving significant performance improvements across multiple 
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datasets. 

                   Table1: Parameters Comparison of  RoBERTa, BERT, and BiLSTM 

Model  Parameters  
RoBERTa 476.8M 
BERT 418.2M 
BiLSTM 165.59 

Table 2: A Comparison of the Accuracy of two Distillation Paths on the SST-5 and SST-2 Datasets. 

                Datasets 

                    Route 

SST-5 SST-2 

Roberta--BiLSTM 36.02 50.41 

Roberta—Bert--BiLSTM 37.69 52.83 

4.2 Main Results 

Table 1 presents a comparison of the parameter counts for the three models used in the experiments. 

As shown in the table 1, RoBERTa has the largest number of parameters (476.8M), followed by BERT 
(418.2M), while BiLSTM has the fewest parameters (165.59M). This design, transitioning from complex 
to simple model architectures, helps to gradually compress the model size while maintaining performance. 
Table 2 compares the accuracy of two distillation paths on the SST-5 and SST-2 datasets. The results 
demonstrate that TAKD (Roberta–Bert–BiLSTM) achieves higher accuracy on both SST-5 and SST-2 
datasets compared to the traditional Vanilla KD (Roberta–BiLSTM), indicating that the introduction of 
the intermediate model BERT effectively enhances the performance of the student model BiLSTM. 

Table 3: Dataset information including sample size and number of classes 

Dataset Sample 
Size 

Number of 
Classes 

SST-2 9613 2 
SST-5 11855 5 

TREC-coarse 5952 6 
SUBJ 10000 2 

AG-news 120000 4 

Table 4: Accuracy of RoBERTa on SST-5 and SST-2 datasets 

 𝛽𝛽  SST-5 SST-2 
Stage 1 - 55.34 94.23 

 0.9 56.56 94.78 
 0.8 55.7 94.67 
 0.7 55.93 94.34 

Stage 2 0.6 56.52 92.26 
 0.5 55.48 94.67 
 0.4 56.11 94.34 
 0.3 53.12 94.4 
 0.2 51.72 94.56 
 0.1 51.52 94.07 

After the completion of the first stage of distillation, we utilize the output of the student model to 
introduce a Conditional Generative Adversarial Network (CGAN) to guide the output of the teacher 
model in the second stage, thereby completing the training of the second stage. As shown in Table 4, after 
introducing the Conditional Generative Adversarial Network, the teacher model (RoBERTa) in the 
second stage achieves better classification performance under certain 𝛽𝛽  values compared to the teacher 
model (RoBERTa) in the first stage. This result demonstrates that the introduction of the Conditional 
Generative Adversarial Network effectively helps the model learn more useful features. 
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Table 5: Accuracy comparison of different weight-sharing strategies on SST-5 and SST-2 datasets 

 
 No Sharing Partial Full No Sharing Partial Full 
       

Stage 1 36.61 36.61 36.61 52.83 52.83 52.83 
 Stage 2 𝛼𝛼  

0.9 37.74 37.78 39.14 75.67 74.3 76.39 
0.8 38.69 38.19 39.41 74.46 74.85 76.17 
0.7 38.82 37.6 39.32 74.46 74.63 76.22 
0.6 37.65 38.14 39.37 75.01 74.24 76.33 
0.5 37.87 37.96 38.91 75.29 74.24 76.17 
0.4 36.29 38.24 39.14 74.52 73.59 76.28 
0.3 37.74 37.87 39.32 74.9 74.52 76 
0.2 37.15 37.56 39 74.52 56.34 76.11 
0.1 37.16 38.01 39.41 74.96 73.86 75.78 

Ave Improvement +1.07 +1.32 +2.35 +22.03 +19.45 +23.33 

 
Figure 2: Accuracy Trends of the Second-Stage 
Student Model Under Different Weight-Sharing 

Strategies on SST-5 

Figure 3: Accuracy Trends of the Second-Stage 
Student Model Under Different Weight-Sharing 

Strategies on SST-2 

During the training process of the second stage, we discovered that weight sharing between 
corresponding models in the two stages could enhance performance. By combining adversarial loss with 
three different weight-sharing strategies (no sharing, partial weight sharing, and full weight sharing), we 
found that full weight sharing significantly improved the accuracy of the BiLSTM model in the second 
stage compared to no weight sharing. As shown in Table 5 and Figures 2 and 3, the full weight-sharing 
strategy achieved greater accuracy improvements on both the SST-2 and SST-5 datasets compared to the 
other two strategies, and it demonstrated higher robustness to changes in the 𝛼𝛼  values. Specifically, the 
highest accuracy on the SST-2 dataset reached 76.39%, while the highest accuracy on the SST-5 dataset 
was 39.41%. 

As shown in Figure 4, while adopting a full weight-sharing strategy, we introduce a CGAN to guide 
the second-stage teacher model using the output of the first-stage student model. Additionally, we further 
incorporate another CGAN to enable the first-stage student model to guide the learning process of the 
second-stage student model. Experimental results demonstrate that this improved strategy significantly 
enhances classification performance. 
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Table6: BiLSTM classification performance on SST-5 with different 
hyperparameter values 

Stage 1 36.61 
 
 
 

Stage 2 

β   
α 

0.1 0.2 0.3 

0.9 38.19 - - 
0.8 36.83 36.65 - 
0.7 39.95 38.37 36.74 
0.6 39.19 39.28 39 
0.5 40.63 40.72 40.68 
0.4 37.69 40.41 40.05 
0.3 37.83 37.65 40.09 
0.2 37.96 37.51 38.55 
0.1 38.60 33.76 37.47 
0 38.42 39.00 34.39 

Ave Improvement +2.53 +1.54 +1.76 
 

Table7: BiLSTM classification performance on SST-2 with 
different hyperparameter values 

Stage 1 52.83 
 

 

 

Stage 2 

β   
α 

0.1 0.2 0.3 

0.9 76.77 - - 
0.8 75.51 77.21 - 
0.7 77.21 76.22 77.16 
0.6 79.21 77.59 74.3 
0.5 78.75 79.35 76.39 
0.4 76.61 78.75 77.05 
0.3 78.69 79.24 79.13 
0.2 79.46 79.02 78.379 
0.1 79.02 79.13 79.13 
0 79.74 79.19 79.13 

Ave Improvement +25.27 +25.58 +24.755 
 

Table8: BiLSTM classification performance on TREC-coarse 
with different hyperparameter values 

Stage 1 62.6 
 
 
 

Stage 2 

β   
α 

0.1 0.2 0.3 

0.9 81.8 - - 
0.8 84 72.6 - 
0.7 85 82.6 72.4 
0.6 85.4 84 81.4 
0.5 87.2 83.4 82.6 
0.4 87.6 85 82.6 
0.3 88.2 87 85.6 
0.2 86.4 85.2 85.6 
0.1 86.4 86.2 84.8 
0 77.8 85.4 85.4 

Ave Improvement +22.3 +20.8 +19.9 
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Table9: BiLSTM classification performance on AG-
news with different hyperparameter values 

Stage 1 90.36 
 
 
 
Stage 2 

β   
α 

0.1 0.2 0.3 

0.9 89.43 - - 
0.8 90.24 90.49 - 
0.7 90.80 90.95 89.47 
0.6 91.57 91.21 90.33 
0.5 91.53 91.05 90.92 
0.4 91.57 90.96 89.67 
0.3 91.26 91.12 90.82 
0.2 89.64 91.11 90.28 
0.1 89.79 91.08 90.88 
0 89.17 90.78 90.14 

Ave Improvement +0.57 +0.61 -0.05 
We applied the final proposed distillation approach to five datasets and conducted experiments 

under different hyperparameter settings. The results indicate that in the total loss of the second-stage 
student model, the best classification performance is consistently achieved when the adversarial loss 
weight is set to 0.1 or 0.2, suggesting that an excessively large adversarial loss weight may be detrimental. 

As shown in Tables 6 -10, on the SST-5 dataset, the highest accuracy increased from 39.41% to 
40.72%, with the average improvement rising from 2.35 to 2.53.On the SST-2 dataset, the highest 
accuracy improved from 76.39% to 79.74%, with the average improvement increasing from 23.33% to 
25.27%. In the remaining three datasets, the second-stage student model consistently outperformed the 
first-stage student model across different hyperparameter settings. Specifically, the maximum average 
improvement reached 22.38% on the TREC-coarse dataset, 0.57% on the AG-news dataset, and 40.24% 
on the SUBJ dataset. 

Table10: BiLSTM classification performance on SUBJ 
with different hyperparameter values 

Stage 1 62.6 
 
 
 
Stage 2 

β 
α 

0.1 0.2 0.3 

0.9 89.55 - - 
0.8 90.45 89.45 - 
0.7 90.8 90.05 85.6 
0.6 91.3 90.55 86.2 
0.5 91.35 91.2 86 
0.4 90.95 91.25 85.8 
0.3 91.35 90.75 85.4 
0.2 91.4 91.45 86.4 
0.1 91.2 91.9 86.2 
0 91 91.25 87.2 

Ave Improvement +40.24 +40.17 +35.4 
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Figure 4: Accuracy Comparison Between the First-Stage Teacher Model(Roberta) and the Second-

Stage Student Model(BiLSTM) Across Different Datasets 

As shown in Table 1 and Figure 4, with the proposed method in this paper, the student model requires 
only 35% of the teacher model’s parameters, while the second-stage student model achieves 85% to 90% 
of the teacher model’s performance in terms of accuracy on most datasets. 

Table11:Accuracy of BiLSTM at𝛽𝛽 =0.1 
on SST-5 Dataset with Adversarial 

Training Between Two  Student Models 
Only 

α β BiLSTM 
1 0 39.05 

0.9 0.1 38.19 
0.8 0.1 36.68 
0.7 0.1 39.95 
0.6 0.1 39.19 
0.5 0.1 40.63 
0.4 0.1 37.69 
0.3 0.1 37.83 
0.2 0.1 37.96 
0.1 0.1 38.6 
0 0.1 38.42 

Ave Improvement -0.521 
 

Table12:Accuracy of BiLSTM at 𝛽𝛽 =0.2 on 
SST-5 Dataset with Adversarial Training 

Between Two  Student Models Only 

α β BiLSTM 
1 0 39.05 

0.8 0.2 38.28 
0.7 0.2 36.7 
0.6 0.2 40.05 
0.5 0.2 38.51 
0.4 0.2 39.86 
0.3 0.2 36.11 
0.2 0.2 36.74 
0.1 0.2 37.19 
0 0.2 38.33 

Ave Improvement -1.0756 
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4.3 Ablation Study 

Furthermore, we conducted an in-depth investigation into the classification performance of different 
distillation routes on the SST-5 dataset. Building upon our previous experimental setup, we retained only 
the adversarial training module for the student model during both stages of distillation. As shown in Table 
11 - 12, introducing the adversarial module led to a decline in classification performance for the student 
model in the second distillation stage across various hyperparameter settings compared to the scenario 
without adversarial training. 

Additionally, we explored the effectiveness of directly incorporating a Conditional Generative 
Adversarial Network (CGAN) after a single distillation to guide the student model for secondary 
classification. 

Table 13: Comparison of Secondary Classification Performance with CGAN after Single Distillation 

Before  36.61 
 

After 

Adversarial  Classification   
0.9 0.1 37.42 
0.8 0.2 32.65 
0.7 0.3 38.05 
0.6 0.4 38.05 
0.5 0.5 37.01 
0.4 0.6 38.82 
0.3 0.7 38.14 
0.2 0.8 39.46 
0.1 0.9 38.55 

Ave Improvement +0.96 
As shown in Table 13, after adversarial training, the student model achieved an average classification 

accuracy improvement of 0.96% across different hyperparameter settings compared to when adversarial 
training was not applied. 

Finally, we further introduced three adversarial modules, allowing the same models from both 
distillation stages to participate in adversarial training. However, experimental results showed that the 
classification performance of the student model after the second distillation did not surpass that of the 
student model after the first distillation across various hyperparameter settings. This suggests that while 
adversarial training can enhance model performance in a single distillation, incorporating excessive 
adversarial modules in multiple distillation stages may lead to performance degradation. A possible 
explanation is that the overly complex adversarial training interfered with the effective transfer of 
knowledge. 

5. Discussion 

In this paper, we propose an adversarial distillation framework that integrates two-stage knowledge 
distillation with Conditional Generative Adversarial Networks (CGAN) to address the performance 
degradation caused by the capacity gap between the teacher and student models. Through a two-stage 
distillation process (from RoBERTa to BERT, and then to BiLSTM) and z-score normalization, the 
student model can more effectively learn the inter-class relationships from the teacher model. The 
introduction of CGAN significantly enhances the generalization ability and classification performance 
of the student model. On the SST-2 and SST-5 datasets, the student model achieves 85%-90% of the 
teacher model’s accuracy while using only 35% of the teacher model’s parameters. Experimental results 
demonstrate that the full weight-sharing strategy performs the best, and moderate adversarial training 
facilitates knowledge transfer, while overly complex adversarial mechanisms may hinder effective 
knowledge transfer. This framework has made significant progress in model compression and knowledge 
transfer, and future research can further explore how to optimize the adversarial distillation framework 
for different tasks and model architectures to achieve broader applicability. 
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