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Abstract: In traditional knowledge distillation, a significant capacity gap between the teacher and
student models often leads to information loss and performance degradation. To address this issue, this
study proposes a two-stage knowledge distillation framework. In the first stage, a progressive distillation
strategy is employed, transferring knowledge from RoBERTa to BERT and then to BiLSTM, gradually
reducing model complexity while sharing model weights to enhance knowledge transfer. In the second
stage, a Conditional Generative Adversarial Network (CGAN) is introduced, utilizing the first-stage
student model’s output as a conditional input for adversarial training, guiding optimization between
RoBERTa and BiLSTM to improve the classification performance of the student model. Additionally,
zscore normalization is applied to ensure that the student model focuses on relative relationships between
classes rather than absolute logits values, effectively mitigating performance bottlenecks caused by the
capacity gap. Experimental results on multiple NLP datasets demonstrate that the proposed method
significantly enhances the classification performance of the student model, achieving 85%-90% of the
teacher model’s performance, while substantially reducing model parameters, outperforming traditional
knowledge distillation methods.

Keywords: Knowledge Distillation, Genarative Adversatial Networks, Text Classification, Artificial
Intelligence

1. Introduction

Knowledge distillation, proposed by Hinton et al.l'l, is a model compression technique that trains a
light weight student model to mimic a more powerful teacher model, aiming to maintain model
performance while reducing computational costs. However, traditional knowledge distillation methods
may suffer from information loss or performance degradation when handling complex tasks. For instance,
when there is a significant capacity gap between the teacher and student models, the student model may
fail to capture the intricate knowledge encoded in the teacher model’s outputs, leading to suboptimal
distillation results.

To address these challenges, this paper introduces a two-stage distillation framework designed to
progressively reduce model complexity through phased distillation, enabling smoother knowledge
transfer to the student model. Experimental results demonstrate that, compared to single-stage distillation,
the two-stage approach allows the student model to acquire more comprehensive knowledge from the
teacher model. Furthermore, by integrating a Conditional Generative Adversarial Network (CGAN)?],
the output of the student model from the first distillation stage is utilized to guide the optimization process
in the second stage, further enhancing the student model’s classification performance. Experimental
results show that the proposed method outperforms traditional single-stage distillation across multiple
datasets.

Additionally, to improve the student model’s ability to learn inter-class relationships, this paper
employs logits normalization techniques. By applying the z-score function to standardize the logits
outputs of both the teacher and student models, the student model focuses on mimicking the relative
relationships between categories in the teacher model rather than their absolute values. This approach
effectively mitigates the capacity gap between the teacher and student models, preventing performance
bottlenecks caused by the student model directly imitating the logits values. The main contributions of
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this paper include:

1) Proposing a Two-Stage Dual Knowledge Distillation Framework: Distilling from RoBERTa to
BERT in the first stage, and then from BERT to BiLSTM in the second stage, progressively reducing
model complexity. During the dual distillation process, model weights are shared to ensure effective
knowledge transfer. Additionally, the z-score function is used to standardize the logits output by the
teacher and student models, helping the student model focus on learning the class relationships predicted
by the teacher model.

2) Introducing a Conditional Generative Adversarial Network (CGAN): Leveraging the output
of the first-stage student model (BiLSTM), the CGAN guides the adversarial optimization between
RoBERTa and BiLSTM during the second-stage distillation, thereby enhancing the generalization ability
and classification performance of the student model.

3) Multi-Task Joint Optimization: Combining classification loss, adversarial loss, and distillation
loss during the distillation process to further improve the expressiveness and classification effectiveness
of the student model.

2. Related Work
2.1 Knowledge Distillation

Knowledge distillation aims to transfer “dark knowledge” from a complex teacher model to a
lightweight student model. By learning from the soft labels provided by the teacher model, the student
can achieve better performance than training solely with hard labels. In the field of classification
networks, knowledge distillation focuses on the transfer of soft label knowledge and intermediate feature
layer knowledge. The solution emphasizes effective supervised learning and knowledge transfer from
the teacher network to the student network.

After the introduction of the traditional Knowledge Distillation (KD) method, researchers have
explored various improvements based on its core ideas. For example, compared to the soft label output
of traditional KDI!l, Park W et al. proposed Relational Knowledge Distillation (RKD)™!, which focuses
on the structural output information of the model. By transferring distance and angular information from
the model’s outputs, RKD improves the measurement of distillation loss and achieves better distillation
performance than KD. Zhao B et al. proposed Decoupled Knowledge Distillation (DKD)B], which
decomposes the classical KD loss into Target Class Knowledge Distillation (TCKD) and Non-Target
Class Knowledge Distillation (NCKD). This method explains and verifies that TCKD is responsible for
adjusting the difficulty level of training samples during knowledge transfer, while NCKD is the main
component responsible for transferring soft label knowledge.

Additionally, Seyed-Iman Mirzadehetal. Proposed Teacher-Assistant Knowledge Distillation(TAKD)
[ which introduces an assistant model between the traditional teacher model and student model to
facilitate a smoother transition of “knowledge” to the student model. Zheng Li et al. proposed Curriculum
Temperature for Knowledge Distillation (CTKD)!”), which employs an adversarial learning module to
predict sample temperature, adapting to varying sample difficulties. Shangquan Sun et al.’®! proposed
logit distillation preprocessing to adaptively allocate temperature between the teacher and student models
as well as across samples.

2.2 Generate Adversarial Networks

Generative Adversarial Networks (GANs) B! are an innovative unsupervised learning framework
inspired by the zero-sum game theory in game theory. The adversarial training concept of GANs allows
the generator and discriminator to optimize their parameters through mutual competition, generating
high-quality samples and demonstrating stronger feature learning and expressive capabilities compared
to traditional algorithms. Through continuous iterative optimization, GANs eventually reach a Nash
equilibrium, completing the modeling of the sample distribution.

Researchers have proposed various variants to address issues such as training difficulties in GANSs.
Mirza M et al. introduced Conditional Generative Adversarial Nets (CGAN)?, which adds constraints
to the original GAN, addressing the problem of excessive freedom in GANs and guiding the network to
generate samples in a desired direction. Zhu W et al. proposed Deep Convolutional GANs (DCGAN) [,
which combines Convolutional Neural Networks (CNNs) with GANSs, ensuring the quality and diversity

Published by Francis Academic Press, UK
-13-



Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 9, Issue 1: 12-23, DOI: 10.25236/AJCIS.2026.090102

of generated images. Zhao J B et al. proposed Energy-Based GANs (EBGAN) ') which interprets GANs
from an energy perspective, assigning low energy to real samples and high energy to generated samples,
thereby improving model stability.

Berthelot D et al. introduced Boundary Equilibrium GANs (BEGAN)!'!l, which does not directly
estimate the distance between the generated distribution p g and the real distribution p x , but instead
estimates the error distribution between the generated and real data distributions and optimizes the error
distribution. Additionally, they proposed a hyperparameter that balances sample diversity and quality, as
well as a method to measure model convergence. Mao X D et al. proposed Least Squares GANs
(LSGAN)!2, which replaces the cross-entropy loss function of traditional GANs with a least squares
loss function. This approach effectively addresses the issues of low-quality image generation and
unstable training in traditional GANS.

3. Methods
3.1 Background

3.1.1 Knowledge Distillation

Knowledge distillation guides the training of the student model through the softened output labels
from the teacher model and the true training labels. Specifically, knowledge distillation introduces the
concepts of temperature T and softened labels. Under the condition of parallel training with true labels,
it achieves the transfer of soft label knowledge from the teacher network to the student network. For a
given dataset D = {(x;, y;)}\-,, the Kullback-Leibler (KL) [*ldivergence loss is used to minimize the
difference between the soft output probabilities of the student model and the teacher model:

t S

Lea(qt,q%7) = SIy 72 KL (a (4).0 (‘%)) M

Here, q° represents the soft labels generated by the teacher model, g° represents the soft labels

generated by the student model, and o(-) denotes the Softmax function "4, which converts logits into

probability distributions. T is the temperature parameter used to scale the logits output by both the teacher

and student models. When T is small, the probability distribution output by the teacher model becomes

sharper, approaching hard labels (where the probability of one class is close to 1, and the probabilities of

other classes are close to 0). Conversely, when T is large, the probability distribution output by the

teacher model becomes smoother, with the probabilities of high-probability categories decreasing and

the probabilities of low-probability categories increasing, causing the overall distribution to tend toward
uniformity.

3.1.2 z-score Function

In traditional knowledge distillation, the student model is typically required to directly mimic the
logits values output by the teacher model. However, due to the differences in parameter scale and
capability between the teacher model and the student model, direct imitation may lead to performance
degradation. To address this issue, this paper introduces the z-score 3! normalization method. By
standardizing the logits, the student model is enabled to focus on learning the relative relationships
between different categories in the teacher model, rather than the absolute values.

5 _ 2—U(z)
ow ' 1T ow @

Here, given the output logits vector v from the teacher model and the output logits vector z from the
student model, where p(-) represents the mean of the logits vector and o (-) represents the standard
deviation of the logits vector. Through this standardization operation, the student model can ignore the
absolute differences in logits and focus solely on the relative ranking and differences between categories
in the teacher model.

3.1.3 Conditional Generative Adversarial Nets

Based on the original GAN, constraints are added to address the issue of excessive freedom in GANSs.
In this paper, the selected constraint y is the true label. By incorporating y as an additional input layer
to both the discriminator and the generator, regulation is achieved. The output of the student model from
the first stage is utilized as the conditional information for the CGAN. The generator attempts to produce
logits that closely resemble those of the teacher model, while the discriminator distinguishes between the
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real teacher logits and the generated logits.
mGinmngV(Dt G) = ]Ex~pdata(x) [lOgD (x)] + IE:z~pz(z) [lOg(l - D(G (Z)))] (3)

Here, D is the discriminator, G is the generator, z is the noise vector, and y is the constraint condition.
The objective function of the Generative Adversarial Network (GAN) is optimized by minimizing the
generator G and maximizing the discriminator D through the adversarial loss V (D, G). Specifically, the
discriminator D aims to maximize the probability logD (x) of correctly identifying real data x (sampled
from the data distribution pg,¢,(x)), while minimizing the probability log(1 — D(G(z))) of incorrectly
identifying generated data G (z) (sampled from the noise distribution p,(z)). The generator G, on the
other hand, aims to minimize the discriminator’s probability log(1 — D(G(z))) of identifying generated
data, thereby making the generated data closer to the real data distribution.

3.2 Adversarial Distillation

\ Datasets

l./ ¥ \'| \
' [ ROoBERTa | ; i
: | i !
. 1
: ( BElRT ) : :
! i : 1
. [ BiLSTM ]——'——r’ :
i‘ Stage 1 : I\ Stage 2 1

Figure 1: Distillation route

Based on the above background, to address the challenges of knowledge distillation caused by the
capacity gap between the teacher model and the student model, this paper proposes a two-stage
distillation framework with two distillation steps. In each distillation step, the student model transitions
from complex to simple architectures, specifically from RoBERTa to BERT, and then to BiLSTM.
Additionally, a Conditional Generative Adversarial Network (CGAN) is introduced to guide the student
model in optimizing its output through adversarial training(as shown in figure 1).Furthermore, to enable
the student model to more effectively learn the relative relationships between categories rather than
absolute values from the teacher model’s output, this paper incorporates z-score normalization on the
outputs of each model, allowing the model to focus on the relative relationships between categories.

As shown in figure 1,in the first stage of distillation, the process goes from RoBERTa to BERT, and
then from BERT to BiLSTM, allowing the student model to progressively learn the soft labels from the
teacher model while maintaining model performance. The logits output by each model are standardized
using the z-score function, enabling the student model to focus on learning the relative relationships
between categories. Specifically:

RoBERTa uses only the classification loss L c¢ %,

BERT and BiLSTM use a weighted sum of the classification loss and the distillation loss (As shown
in Equation (4)):

Lig1 = aLeg + (1 — a)Lgp 4
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Algorithm 1 Two-Stage Knowledge Distillation with Conditional GAN

Input: Training dataset D = {(14-_"1']}:\_.,? Pre-trained Teacher RoBERTa #.,: Learning rate n; Total
training epochs £y . .. E,;: Initialized models: fppgt. #piLgrai: Pre-trained CGAN models G, D.
Output: Well-trained Student BiILSTM 61, oy
First Stage Distillation:
1. Initialize: Epoch ¢ = 1: Randomly initialize Opprt. OBisT™.
2. while e < £, do

ER for each batch (x, y) in D do

4 Forward pass through RoBERTa and BERT to get logits:
5: fiea (0 hea). fun (X2 OBERT)

6 Compute distillation and classification losses for BERT:
kE Lperr = aLeg + (1 - a)Lgp

8 Forward pass through BiLSTM and compute logits:

o fouu(¥: BpisTov)

10: Compute BiLSTM loss:

11 Lpitstmy = aLep + (1 —a)lgp
12: Update fgggt and i sTm by backpropagation.
13: end for
14: Update e = e+ 1
15: end while
Second Stage Distillation:
16: Load weights Trom first stage: OgopErTa- #BERT: #BiILSTM
17: Initialize: Epoche =1
15: while ¢ < £, do

19: for each batch (x, y) in D do

20 Forward pass through RoBERTa, guided by CGAN:

21 fGan (x: G), LroperTa = BLGan + (1 - B)LcE

22: Compute BERT loss as in Step 6.

23 Forward pass through BiLSTM, guided by CGAN:

24 foan(x: G), Lpitstv = YLoe +dLgp + (1 =y - 0)Lgawn
25 Update fropErTa. @BERT. ORiLsTM by backpropagation.

26: end for

27 Update e = e + 1.

28: end while

Here, L, represents the total loss of the task, which consists of the classification loss Ly and the
distillation loss Lgp. The weight parameter a is used to control the balance between the two, ensuring
that the total loss effectively optimizes both the classification task and the distillation task.

In the second stage of distillation, ROBERTa, BERT, and BiLSTM all load the weights of their
corresponding models saved from the first distillation, achieving weight sharing between the two
distillation stages. Meanwhile, a Conditional Generative Adversarial Network (CGAN) is introduced,
using hard labels as conditional information to guide RoBERTa and BiLSTM in the second distillation
to generate features different from the outputs of the first-stage student model BiLSTM, thereby avoiding
redundant learning of ineffective information. By jointly optimizing the classification loss, distillation
loss, and adversarial loss, the classification performance and generalization ability of the student model
are further enhanced. Specifically:

RoBERTa: Uses a weighted sum of the classification loss and the adversarial loss(as shown in
Equation(5)):
Liota = BLce + (1 = B)Lgan (5)
Here, Bcontrols the weight between the classification loss and the adversarial loss.

BERT: Uses a weighted sum of the classification loss and the distillation loss, as shown in Equation(4).

BiLSTM: Combines the classification loss, distillation loss, and adversarial loss, with the sum of their
weights equal to 1, ensuring a balanced loss function(as shown in Equation(6)).

Liotar = @Lgp + BLgan + (1 —a — B)Lcg (6)

Here, the weights of the three components are controlled by a and 3.

4. Experiment
4.1 Benchmark Datesets and Models

We evaluate our proposed distillation approach on five natural language processing (NLP) benchmark
datasets. These five datasets as shown in table 3 include:SST-2 [16], SST-5 [16], TREC-coarse[17], AG-
news[18],SUBJ[19],all of which come from HuggingFace Datasets or the official website of the dataset.
We selected RoBERTabase[20] as the teacher model, BERT-base-uncased[21]as the intermediate model,
and BiLSTM][22] as the student model. For the generative adversarial network, we employed a
Conditional Generative Adversarial Network (CGAN). As a knowledge distillation framework, we
compared our approach with vanilla Knowledge Distillation (vanilla KD) and Teacher-Assistant
Knowledge Distillation (TAKD), achieving significant performance improvements across multiple
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datasets.

Tablel: Parameters Comparison of RoBERTa, BERT, and BiLSTM

Model Parameters
RoBERTa 476.8M
BERT 418.2M
BiLSTM 165.59

Table 2: A Comparison of the Accuracy of two Distillation Paths on the SST-5 and SST-2 Datasets.

Datasets SST-5 SST-2

Route
Roberta--BiLSTM 36.02 50.41
Roberta—Bert--BiLSTM 37.69 52.83

4.2 Main Results

Table 1 presents a comparison of the parameter counts for the three models used in the experiments.

As shown in the table 1, RoOBERTa has the largest number of parameters (476.8M), followed by BERT
(418.2M), while BiLSTM has the fewest parameters (165.59M). This design, transitioning from complex
to simple model architectures, helps to gradually compress the model size while maintaining performance.
Table 2 compares the accuracy of two distillation paths on the SST-5 and SST-2 datasets. The results
demonstrate that TAKD (Roberta—Bert-BiLSTM) achieves higher accuracy on both SST-5 and SST-2
datasets compared to the traditional Vanilla KD (Roberta—BiLSTM), indicating that the introduction of
the intermediate model BERT effectively enhances the performance of the student model BiLSTM.

Table 3: Dataset information including sample size and number of classes

Dataset Sample Number of
Size Classes
SST-2 9613 2
SST-5 11855 5
TREC-coarse 5952 6
SUBJ 10000 2
AG-news 120000 4

Table 4: Accuracy of RoBERTa on SST-5 and SST-2 datasets

B SST-5 SST-2
Stage 1 - 55.34 94.23
0.9 56.56 94.78
0.8 55.7 94.67
0.7 55.93 94.34
Stage2 0.6 56.52 92.26
0.5 55.48 94.67
0.4 56.11 94.34
0.3 53.12 94.4
0.2 51.72 94.56
0.1 51.52 94.07
After the completion of the first stage of distillation, we utilize the output of the student model to
introduce a Conditional Generative Adversarial Network (CGAN) to guide the output of the teacher
model in the second stage, thereby completing the training of the second stage. As shown in Table 4, after
introducing the Conditional Generative Adversarial Network, the teacher model (RoBERTa) in the
second stage achieves better classification performance under certain 5 values compared to the teacher
model (RoBERTa) in the first stage. This result demonstrates that the introduction of the Conditional
Generative Adversarial Network effectively helps the model learn more useful features.
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Table 5: Accuracy comparison of different weight-sharing strategies on SST-5 and SST-2 datasets

SST-5 SST-2
No Sharing Partial Full No Sharing Partial Full

Stage 1 36.61 36.61 36.61 52.83 52.83 52.83

Stage2 «a
0.9 37.74 37.78  39.14 75.67 74.3 76.39
0.8 38.69 38.19 3941 74.46 74.85 76.17
0.7 38.82 37.6  39.32 74.46 74.63 76.22
0.6 37.65 38.14 3937 75.01 74.24 76.33
0.5 37.87 37.96 38091 75.29 74.24 76.17
0.4 36.29 3824 39.14 74.52 73.59 76.28
0.3 37.74 37.87 3932 74.9 74.52 76
0.2 37.15 37.56 39 74.52 56.34 76.11
0.1 37.16 38.01 39.41 74.96 73.86 75.78

Ave Improvement +1.07 +1.32  +2.35 +22.03 +19.45 +23.33

39.5 7

759
39.0

38.5 ol

—e— Stage 1
Stage 2 (Not Shared)

o
o

Accuracy (%)

—e— Stage 2 (Partial Shared)
—8— stage 2 (Full Shared)

Accuracy (%)

36.5

55 4

T T T T T
1.0 0.8 0.6 0.4 0.2
a

—8— Stage 1 —8— Stage 2 (Partial Shared) l.lo
Stage 2 (Not Shared) =~ —8— Stage 2 (Full Shared)

0.‘3 0:6 0:4 0:2
Figure 2: Accuracy Trends of the Second-Stage  Figure 3: Accuracy Trends of the Second-Stage

Student Model Under Different Weight-Sharing  Student Model Under Different Weight-Sharing
Strategies on SST-5 Strategies on SST-2

During the training process of the second stage, we discovered that weight sharing between
corresponding models in the two stages could enhance performance. By combining adversarial loss with
three different weight-sharing strategies (no sharing, partial weight sharing, and full weight sharing), we
found that full weight sharing significantly improved the accuracy of the BILSTM model in the second
stage compared to no weight sharing. As shown in Table 5 and Figures 2 and 3, the full weight-sharing
strategy achieved greater accuracy improvements on both the SST-2 and SST-5 datasets compared to the
other two strategies, and it demonstrated higher robustness to changes in the @ values. Specifically, the
highest accuracy on the SST-2 dataset reached 76.39%, while the highest accuracy on the SST-5 dataset
was 39.41%.

As shown in Figure 4, while adopting a full weight-sharing strategy, we introduce a CGAN to guide
the second-stage teacher model using the output of the first-stage student model. Additionally, we further
incorporate another CGAN to enable the first-stage student model to guide the learning process of the
second-stage student model. Experimental results demonstrate that this improved strategy significantly
enhances classification performance.
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Table6. BIiLSTM classification performance on SST-5 with different
hyperparameter values

Stage 1 36.61
B 0.1 0.2 0.3
o
0.9 38.19 - -
Stage 2 0.8 36.83 | 36.65 -
0.7 39.95 38.37 36.74
0.6 39.19 39.28 39
0.5 40.63 40.72 40.68
0.4 37.69 40.41 40.05
0.3 37.83 37.65 40.09
0.2 37.96 37.51 38.55
0.1 38.60 33.76 37.47
0 38.42 39.00 34.39
Ave Improvement +2.53 +1.54 +1.76

Table7: BiLSTM classification performance on SST-2 with
different hyperparameter values

Stage 1 52.83
0.1 0.2 0.3
o
0.9 76.77 - -
0.8 75.51 77.21 -
0.7 77.21 76.22 77.16
0.6 79.21 77.59 74.3
Stage 2 0.5 78.75 79.35 76.39
age
0.4 76.61 78.75 77.05
0.3 78.69 79.24 79.13
0.2 79.46 79.02 78.379
0.1 79.02 79.13 79.13
0 79.74 79.19 79.13
Ave Improvement +25.27 +25.58 | +24.755

Table8: BiLSTM classification performance on TREC-coarse
with different hyperparameter values

Stage 1 62.6
0.1 0.2 0.3
o
0.9 81.8 - -
Stage 2 0.8 84 72.6 -
0.7 85 82.6 72.4
0.6 85.4 84 81.4
0.5 87.2 83.4 82.6
0.4 87.6 85 82.6
0.3 88.2 87 85.6
0.2 86.4 85.2 85.6
0.1 86.4 86.2 84.8
0 77.8 85.4 85.4
Ave Improvement +22.3 +20.8 +19.9
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Table9: BiLSTM classification performance on AG-
news with different hyperparameter values

Stage 1 90.36
B 0.1 0.2 0.3
o
0.9 89.43 - -
Stage 2 0.8 90.24 | 90.49 -
0.7 90.80 | 90.95 | 89.47
0.6 91.57 | 91.21 | 90.33
0.5 91.53 | 91.05 | 90.92
0.4 91.57 | 90.96 | 89.67
0.3 91.26 | 91.12 | 90.82
0.2 89.64 | 91.11 90.28
0.1 89.79 | 91.08 | 90.88
0 89.17 | 90.78 | 90.14
Ave Improvement +0.57 | +0.61 | -0.05

We applied the final proposed distillation approach to five datasets and conducted experiments
under different hyperparameter settings. The results indicate that in the total loss of the second-stage
student model, the best classification performance is consistently achieved when the adversarial loss
weight is set to 0.1 or 0.2, suggesting that an excessively large adversarial loss weight may be detrimental.

As shown in Tables 6 -10, on the SST-5 dataset, the highest accuracy increased from 39.41% to
40.72%, with the average improvement rising from 2.35 to 2.53.0n the SST-2 dataset, the highest
accuracy improved from 76.39% to 79.74%, with the average improvement increasing from 23.33% to
25.27%. In the remaining three datasets, the second-stage student model consistently outperformed the
first-stage student model across different hyperparameter settings. Specifically, the maximum average
improvement reached 22.38% on the TREC-coarse dataset, 0.57% on the AG-news dataset, and 40.24%
on the SUBJ dataset.

Tablel0: BiLSTM classification performance on SUBJ
with different hyperparameter values

Stage 1 62.6
0.1 0.2 0.3
a
0.9 89.55 - -
Stage 2 0.8 90.45 89.45 -
0.7 90.8 90.05 85.6
0.6 91.3 90.55 86.2
0.5 91.35 91.2 86
0.4 90.95 91.25 85.8
0.3 91.35 90.75 85.4
0.2 914 91.45 86.4
0.1 91.2 91.9 86.2
0 91 91.25 87.2
Ave Improvement +40.24 | +40.17 | +354
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Figure 4: Accuracy Comparison Between the First-Stage Teacher Model(Roberta) and the Second-
Stage Student Model(BiLSTM) Across Different Datasets

As shown in Table 1 and Figure 4, with the proposed method in this paper, the student model requires
only 35% of the teacher model’s parameters, while the second-stage student model achieves 85% to 90%
of the teacher model’s performance in terms of accuracy on most datasets.

Tablell:Accuracy of BiLSTM atfF=0.1
on SST-5 Dataset with Adversarial
Training Between Two Student Models

Only
a B BILSTM
1 0 39.05
0.9 0.1 38.19
0.8 0.1 36.68
0.7 0.1 39.95
0.6 0.1 39.19
0.5 0.1 40.63
0.4 0.1 37.69
0.3 0.1 37.83
0.2 0.1 37.96
0.1 0.1 38.6
0 0.1 38.42
Ave Improvement -0.521

Tablel2:Accuracy of BiLSTM at £=0.2 on
SST-5 Dataset with Adversarial Training
Between Two Student Models Only

a B BiLSTM

1 0 39.05
0.8 0.2 38.28
0.7 0.2 36.7
0.6 0.2 40.05
0.5 0.2 38.51
0.4 0.2 39.86
0.3 0.2 36.11
0.2 0.2 36.74
0.1 0.2 37.19

0 0.2 38.33

Ave Improvement -1.0756
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4.3 Ablation Study

Furthermore, we conducted an in-depth investigation into the classification performance of different
distillation routes on the SST-5 dataset. Building upon our previous experimental setup, we retained only
the adversarial training module for the student model during both stages of distillation. As shown in Table
11 - 12, introducing the adversarial module led to a decline in classification performance for the student
model in the second distillation stage across various hyperparameter settings compared to the scenario
without adversarial training.

Additionally, we explored the effectiveness of directly incorporating a Conditional Generative
Adversarial Network (CGAN) after a single distillation to guide the student model for secondary
classification.

Table 13: Comparison of Secondary Classification Performance with CGAN after Single Distillation

Before 36.61
Adversarial | Classification
0.9 0.1 37.42
0.8 0.2 32.65
After 0.7 0.3 38.05
0.6 0.4 38.05
0.5 0.5 37.01
0.4 0.6 38.82
0.3 0.7 38.14
0.2 0.8 39.46
0.1 0.9 38.55
Ave Improvement +0.96

As shown in Table 13, after adversarial training, the student model achieved an average classification
accuracy improvement of 0.96% across different hyperparameter settings compared to when adversarial
training was not applied.

Finally, we further introduced three adversarial modules, allowing the same models from both
distillation stages to participate in adversarial training. However, experimental results showed that the
classification performance of the student model after the second distillation did not surpass that of the
student model after the first distillation across various hyperparameter settings. This suggests that while
adversarial training can enhance model performance in a single distillation, incorporating excessive
adversarial modules in multiple distillation stages may lead to performance degradation. A possible
explanation is that the overly complex adversarial training interfered with the effective transfer of
knowledge.

5. Discussion

In this paper, we propose an adversarial distillation framework that integrates two-stage knowledge
distillation with Conditional Generative Adversarial Networks (CGAN) to address the performance
degradation caused by the capacity gap between the teacher and student models. Through a two-stage
distillation process (from RoBERTa to BERT, and then to BiLSTM) and z-score normalization, the
student model can more effectively learn the inter-class relationships from the teacher model. The
introduction of CGAN significantly enhances the generalization ability and classification performance
of the student model. On the SST-2 and SST-5 datasets, the student model achieves 85%-90% of the
teacher model’s accuracy while using only 35% of the teacher model’s parameters. Experimental results
demonstrate that the full weight-sharing strategy performs the best, and moderate adversarial training
facilitates knowledge transfer, while overly complex adversarial mechanisms may hinder effective
knowledge transfer. This framework has made significant progress in model compression and knowledge
transfer, and future research can further explore how to optimize the adversarial distillation framework
for different tasks and model architectures to achieve broader applicability.
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