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ABSTRACT: Carbon price prediction is of cardinal significance for promoting the 
development of carbon trading market. However, the strong non-stationary and 
nonlinearity characteristics of the carbon price pose a challenge to the carbon price 
prediction model. To improve the accuracy of carbon price prediction, a combined 
model based on ensemble empirical mode decomposition (EEMD) is proposed in 
this paper. In the proposed model, EEMD is used to decompose the original data into 
a series of relatively stable component sequences. Then, the extreme learning 
machine (ELM) and BP neural network (BP) optimized by particle swarm 
optimization algorithm (PSO) are used to respectively predict the component 
sequences and integrate the predicted results. Finally, the weights of the two 
prediction methods are determined by the variance-covariance method, and the final 
combined prediction result is obtained. To verify the performance of proposed 
model, the carbon price sequences of Shenzhen and Hubei of China were selected. 
The results showed that the combined model had good performance. 

KEYWORDS: carbon price forecasting, ensemble empirical mode decomposition, 
he extreme learning machine, BP neural network, the combination forecasting 
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1. Introduction 

In recent years, global climate change caused by greenhouse gases (GHG) has 
attracted extensive attention at home and abroad [1]. As a major greenhouse gas, 
carbon dioxide (CO2) contributes 63% to the greenhouse effect [2]. Therefore, 
controlling carbon emission has become a top priority for every country. On January 
1, 2005, the European Union established the European emissions trading system 
(EU ETS) to reduce greenhouse gas emissions. The system has been proved to be 



Academic Journal of Humanities & Social Sciences 
ISSN 2616-5783 Vol.3, Issue 5: 96-116, DOI: 10.25236/AJHSS.2020.030512 

Published by Francis Academic Press, UK 

-97- 

effective in reducing greenhouse gas emissions [3]. As the world's largest carbon 
emitter, China officially launched a pilot carbon trading program in 2011. Then, a 
national carbon trading market was launched in 2017 to reduce China's carbon 
emissions and mitigate climate change [4]. Accurate prediction of carbon price will 
help to understand the characteristics of carbon price and effectively reduce the risk 
of carbon market [5]. However, the highly non-stationary and non-linear nature of 
carbon prices poses challenges to policymakers' forecasts. Therefore, an accurate 
carbon price prediction method is needed. As the earliest carbon emission trading 
market, the carbon price analysis and prediction of the EU ETS has been studied by 
many scholars. Sung et al. proposed a finite distributed lag model (FDL) to predict 
carbon prices and applied genetic algorithm (GA) to optimize the coefficients. The 
results showed that the model was more accurate than the traditional neural network 
model [6].Quan adopted the variational mode decomposition (VMD) method to 
decompose the data into modal components with their own characteristics. Then he 
employed ELM to predict each component and integrated the final prediction results 
[7]. Zhang et al. used signal processing technology to decompose carbon price 
sequence and reconstructed them. Then, the trend component was predicted by 
co-integration model (CIM), the random component was predicted by GARCH 
model, the periodic component was predicted by grey neural network optimized by 
ant colony algorithm (ACA-GNN). Finally, the forecasting results are integrated. 
The results showed that the hybrid model had good performance and could be used 
to predict the carbon spot price of the EU ETS in the future [8]. In addition to 
optimizing the prediction model, researchers also explored the effectiveness of the 
introduction of economic and energy index data in improving the prediction 
accuracy of carbon price [9]. 

With the maturity of China's carbon trading pilot cities, such as Shenzhen and 
Hubei carbon trading market, China's carbon price has gradually attracted the 
attention of scholars. However, previous research focused on the EU ETS, and the 
research on China's carbon price prediction is relatively limited. Whether the model 
based on the EU ETS is also applicable to China's carbon trading market, it remains 
to be tested. Therefore, this paper took the carbon trading markets in Shenzhen and 
Hubei as examples to conduct carbon price prediction model, so as to enrich the 
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research in this field. Guan employed GM(1,1) optimized by results to predict the 
carbon trading prices in Hubei and Guangdong. The results showed that the 
proposed model performed better than the traditional GM(1,1) model [10]. Li et al. 
proposed a hybrid model combining empirical model decomposition (EMD) and 
GARCH, and took five pilot cities of carbon trading as examples to verify its 
performance [11]. Yao et al. combined EMD with intelligent algorithm to predict the 
carbon price of Hubei [12]. 

Generally, carbon price prediction models can be divided into two types: 
statistical model and neural network model. Statistical model includes Vector 
autoregressive model (VAR) [13] GARCH [14] autoregressive integrated moving 
average model (ARIMA) [15] and so on. Neural network model includes BP [16], 
ELM (17), and other neural network models [18]. Due to its high accuracy, high 
speed and large processing capacity, neural network prediction models are favored 
by researchers. Therefore, ELM and PSO-BP were selected to predict carbon price 
in this paper. 

The non-stationary and nonlinear characteristics of carbon price add difficulty to 
the performance of prediction model. Therefore, the characteristics of carbon price 
need be considered when forecasting carbon price [19]. Decomposition method is 
usually used to reduce the non-stationarity of the original data and obtain 
characteristics of carbon price. Zhu adopted EMD to analyze the carbon price of EU 
ETS to grasp the basic characteristics of carbon price change [18]. However, EMD 
cannot solve the problem of modal mixing, which leads to the decrease of prediction 
accuracy. To solve this problem, Wu and Huang proposed the EEMD model [20]. 
The EEMD model effectively overcomes this problem and it is widely used in 
various fields [21]. Therefore, EEMD method was adopted in this paper to 
decompose the original carbon price. The subsequences obtained by the 
decomposition method have different characteristics and a single prediction model 
cannot accurately predict all subsequences. Therefore, hybrid models are often used 
to predict these subsequences [22]. Previous studies usually adopt an appropriate 
model for each component and then integrate the final prediction results. However, 
the process of choosing the appropriate prediction model is often uncertain and 
subjective. Therefore, this paper proposed the variance-covariance method to 
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determine the weight of each prediction model, so as to obtain the final prediction 
results, effectively avoiding the above problems. 

The rest of the paper is structured as follows: in the second part, the related 
methods and the hybrid prediction framework are introduced in detail; in the third 
part, the prediction model is applied to the prediction of carbon price in Shenzhen 
and Hubei to verify the performance of the model and the results of empirical 
analysis are given in this part; summarize the work and look forward to the future 
work. 

2. Methodology 

2.1 EEMD 

EEMD is an improved model of EMD, which can effectively solve the modal 
mixing problem that EMD cannot solve. The process of EEMD is as follows: 

(a) A set of white noise sequencesω(t) is added on the initial time series x(t) to 
obtain a new sequence xt′. 

(b) Using EMD decomposes the sequence xt′: a) find the xt′’s extreme value, fit 
the upper and lower envelope by cubic spline interpolation function, calculate the 
mean value m(t); b) let h(t) = xt′ − m(t), if h(t) is not stationary, substitute h(t) 
for xt′, repeat the above process until the mean value approaches 0, then, get the first 
IMF component c1(t); c) let r1(t) = xt′ − c1(t), repeat the above two processes, 
get the IMF components and difference sequence until it cannot be decomposed, 
obtain a residual component rn(t). 

(c) Repeat step (a) and (b) N times, obtain N groups of different IMF 
components and residual components, calculate the mean of N groups of 
components and take the mean value as the final result. 

2.2 ELM 

In 2004, Huang et al. proposed ELM based on single hidden layer feedforward 
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neural network (SLFN) [23]. The network structure of ELM is shown in figure 1. 

 

Figure. 1 Network structure of ELM 

Suppose N training samples are {(xi, yi)}i=1N , among them, 
xi = [xi1, xi2, … , xin]T, yi = [yi1, yi2, … , yim]T, and SLFN approximates the training 
sample with zero error, so: 

� ojg�wj ∗ xi + bj�
K

j=1

= yi′, i = 1,2, … , N (1) 

Among them, K denotes the number of nodes of SLFN hidden layer; o denotes 
the connection weight vector of the hidden layer node and the output node; g(x) 
denotes the activation function; w denotes the connection weight vector of the input 
node and the hidden layer node. 

Formula (1) can be written as a matrix, as shown in formula (2): 

 H ∗ O = Y (2) 
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has good performance, the following equation should be satisfied in the training 
process: 

 ∥ H ∗ O� − Y ∥= min
O

∥ H ∗ O − Y ∥ (3) 

In the process of solving O�, need to consider to whether H is square matrix, thus 
introducing the Moore–Penrose (MP) generalized inverse of H, as shown in formula 
(4): 

 O� = H+ ∗ Y (4) 

Among them, H+ is the Moore–Penrose (MP) generalized inverse of H. 

Compared with other neural networks, process of ELM is simple and easy to 
implement. 

2.3 Improvement of BP neural network 

2.3.1 BP neural network 

The most widely used neural network is BP neural network. BP neural network 
has two steps: 1) forward propagation of signals; 2) error back propagation. First, 
the signal enters the input layer and is sent to the output layer after passing through 
the hidden layer. Then, the output layer transmits the error forward to adjust the 
connection weight of the neural network. The BP neural network is not trained until 
the error reaches the allowable range. 

2.3.2 PSO-BP neural network 

Although BP network has been widely used, it also has some defects, including: 
a) fall into local minimum value easily; b) it is sensitive to the initial setting of 
parameters. PSO algorithm is an optimization algorithm based on population 
information, which can quickly find the optimal extremum. Therefore, this paper 
employed PSO algorithm to optimize the weights and parameters of BP neural 
network model. The specific steps of PSO-BP neural network model are as follows: 
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(a) Set the relevant parameters in the structure to construct the BP neural 
network. 

(b) Establish the correspondence between particle swarm and weights and 
thresholds. 

(c) Initialize the parameters of particle swarm, including the number of particle 
swarm, particle swarm velocity, position initialization and so on. 

(d) Update particle swarm position and velocity. 

(e) Determine whether the termination condition is satisfied, if not, return to the 
previous step; If so, the optimization result is output and the algorithm ends. Restore 
the final results to the corresponding weights and threshold. 

2.4 Variance-covariance method 

Variance-covariance method is an effective method to determine the weight of 
combined prediction model. The basic steps for specific application are as follows: 

(a) Calculate the variance of error of each prediction model, as shown in formula 
(5): 

 vi = [(σ1 − σ�)2 + (σ2 − σ�)2 + ⋯+ (σn − σ�)2]/n (5) 

Among them, i denotes the model i, n denotes the predicted length; σ1,σ2, … ,σn 
denotes the square of the error between the predicted value and the actual value, σ� 
denotes the mean value of σ1,σ2, … ,σn. 

(b) Calculate the weight of each prediction model, as shown in formula (6): 

 
wi =

1

vi(
1
v1

+ 1
v2

+ ⋯+ 1
vm

)
 

 

(6) 

Among them, wi denotes the weight of the model i, m denotes the number of 
models. 

(c) Calculate the final predicted value, as shown in formula (7): 



Academic Journal of Humanities & Social Sciences 
ISSN 2616-5783 Vol.3, Issue 5: 96-116, DOI: 10.25236/AJHSS.2020.030512 

Published by Francis Academic Press, UK 

-103- 

 
y′ = �wiyi′

m

i=1

 
 

(7) 

Among them, yi′ denotes the predicted value of the model i, y′ denotes the 
predicted value of combined model. 

2.5 Framework of the proposed model 

This paper proposed a prediction model combining signal processing technology 
with neural network. The flow chart of the proposed prediction model is shown in 
figure 2. 

The prediction model mainly includes the following steps: 

(a) The original carbon price sequence is decomposed by EEMD to obtain 
multiple sub-sequences. 

(b) Partial autocorrelation function is used to determine the input variables of 
each subsequence. 

(c) ELM and PSO-BP are adopted to respectively predict each subsequence and 
integrate them to obtain their respective prediction results. 

(d) The weight of each prediction model is determined by the 
variance-covariance method, and the final prediction result is calculated according 
to formula (7). 
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Figure. 2 The proposed model of flow chart 

3. The empirical analysis 
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Among them, Shenzhen carbon emission exchange is the first regional carbon 
trading market in China. Hubei is the region with the highest trading volume and 
value of carbon emissions. Therefore, this paper chose Shenzhen and Hubei carbon 
emission exchange as the representatives of China's carbon trading market. Table 1 
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shows the carbon trading volume share and carbon trading value share of each 
region of China. The carbon prices of Shenzhen and Hubei from June 1, 2014 to 
December 14, 2018 (excluding statutory holidays) were selected as empirical data. 
The data from June 1, 2014 to June 1, 2018 were selected as the training sets, and 
the remaining data were the test sets. Table 2 shows the overview of the sample data, 
and figure 3 shows the original carbon price data group. 

Table 1. The carbon trading volume share and carbon trading value share 

Regio
n 

Shenzh
en 

Hub
ei 

Beiji
ng 

Tianji
n 

Shangh
ai 

Guangdo
ng 

Chongqi
ng 

Fujia
n 

volu
me 

14.1% 32.2
% 

7% 1.6% 7.5% 29% 4.2% 4.3% 

Value 17% 27.9
% 

18.4
% 

1% 8.8% 22.3% 0.7% 3.8% 

Table 2. the overview of the sample data 

Region Sample training sets test sets data 

Shenzhen 1117 984 133 2014/6/1-2018/12/14 
Hubei 1117 984 133 2014/6/1-2018/12/14 

 

Figure. 3 The original carbon price data group 
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3.2 Model performance evaluation criteria 

In order to compare the prediction accuracy of the model, it is necessary to 
evaluate the performance of the model. In this paper, mean absolute error, mean 
square error and mean absolute error percentage were selected to evaluate the 
accuracy of the prediction model. The calculation formula is as follows: 

 1
n
� |yi − yi′|
n

i=1

 

�1
n
�(yi − yi′)2 

�
|yi − yi′|

yi
∗ 100% 

 

 

 

(8) 

Among them, yi  denotes actual carbon price, yi′  denotes prediction carbon 
price, n denotes the predicted length. 

3.3 Carbon price forecasting 

Step 1: Decompose the carbon price. EEMD method employed to reduce the 
non-stationarity of carbon price. The result of decomposition is shown in figure 4. 

Step 2: Select the input variable. Predict the number of targets based on historical 
data. Therefore, this paper introduced partial autocorrelation function (PACF) to 
select the input variable of neural network prediction model. The analysis results of 
partial autocorrelation function are shown in figure 5, and the predicted input 
variables are shown in table 3. 

Step 3: Forecast the carbon price respectively. ELM and PSO-BP were adopted 
to predict each subsequence, and then accumulate the predicted results respectively. 
Table 4 lists part of the parameters for ELM and PSO-BP. 

Step 4: Combine the predicted results. The combined weights of the two 
forecasting methods are determined by the variance-covariance method. The weights 
are shown in table 5. 
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（b） 

Figure. 4 The result of EEMD: (a) Shenzhen; (b) Hubei 
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（b） 

Figure. 5 The analysis results of partial autocorrelation function: (a) Shenzhen; (b) 
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Table 3. The predicted input variables 

serie
s 

Shenzhen Hubei 

IMF
1 

xt−1, xt−2, xt−5, xt−7, xt−8 xt−1, xt−2, xt−3, xt−4, xt−8, xt−12 

IMF
2 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−8, xt−  

IMF
3 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 

IMF
4 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, x  xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7 

IMF
5 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−  

IMF
6 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 

IMF
7 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−7 xt−1, xt−2, xt−3, xt−4, xt−5, xt−7 

IMF
8 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−10 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6 

IMF
9 

xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7 

Res xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7 xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7 

Note: xt−1 denotes the day before the forecast 

Table 4. Part of the parameters for ELM and PSO-BP 

Model parameter value 

ELM 
hidden layer nodes 12 
activation function “sig” 

BP 
hidden layer nodes 11 

learning rate 0.1 
error rate 0.00001 
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iteration times 500 
activation function “sig” 

PSO 
c1,c2 1.49445 

inertia weight 0.5 

Table 5. The weight of models 

Model 
weight  

Shenzhen Hubei 

ELM 0.686 0.628 
PSO-BP 0.314 0.372 

3.4 The comparisons and analysis 

3.4.1 Case of Shenzhen 

The predicted results of Shenzhen carbon price are shown in figure 6. Table 6 
shows the values of MAPE, RMSE and MAE of the predicted results in Shenzhen. 

According to figure 6 and table 6, the following results can be obtained: 

(1) BP neural network optimized by particle swarm performs better than 
traditional BP neural network and ELM. The result shows that PSO-BP is effective 
and accurate. 

(2) Compared with ELM, EEMD-ELM has better prediction accuracy. While 
compared with PSO-BP, the prediction results of EEMD-PSO-BP perform poorly. 
The results show that when the combination of EEMD and single prediction model 
forecast carbon price, a suitable prediction model should be selected 

(3) By comparing EEMD-ELM and EEMD-PSO-BP with the proposed model in 
this paper, the prediction accuracy of the proposed model performs better. The 
results show that the weight determination by variance-covariance method can 
effectively improve the prediction accuracy of the model. 
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Figure. 6 Forecast results of carbon price of Shenzhen 
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model MAPE(%) RMSE MAE 

Proposed model 2.5162 2.3503 0.9227 
EEMD-ELM 2.6321 2.4856 0.9542 
EEMD-PSOBP 2.9887 3.0764 1.1286 
ELM 3.1204 3.5211 1.2307 
PSOBP 2.8876 3.0953 1.1365 
BP 3.3466 3.6741 1.3028 

3.4.2 Case of Hubei 

The predicted results of Hubei carbon price are shown in figure 7. Table 7 shows 
the values of MAPE, RMSE and MAE of the predicted results in Hubei. 

Overall, the proposed model improves predictive performance. The EEMD 
method can deal with the strong nonstationary and nonlinear characteristics of 
carbon price. In the prediction of carbon price sequence, PSO-BP has a better 
performance than BP, and ELM has a better adaptability to complex nonlinear 
problems. By combining the advantages of the two methods, the prediction results 
are more accurate and stable. 
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Figure. 7 Forecast results of carbon price of Hubei 

Table 7 The performance of predicted model in Hubei 

model MAPE(%) RMSE MAE 

Proposed mode 1.2124 0.5246 0.3286 
EEMD-ELM 1.2442 0.5278 0.3366 
EEMD-PSOBP 1.4616 0.6863 0.4052 
ELM 3.9642 1.4882 1.0960 
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PSOBP 3.6448 1.3837 1.0043 
BP 3.5033 1.3764 0.9420 

4. Conclusions 

In this paper, a combined prediction model based on EEMD, ELM, PSO-BP and 
variance-covariance method is proposed to improve the performance of carbon price 
prediction. The original carbon price sequence is decomposed into multiple 
sub-sequences by EEMD method. Then, the combined prediction results were 
obtained by combining ELM with the PSO-BP using variance-covariance method. 
The empirical results from Shenzhen and Hubei show that the performance of the 
proposed model is better than other comparative prediction models. The results 
show that: (a) BP neural network optimized by particle swarm performs better than 
traditional BP neural network and ELM; (b) using EEMD method to decompose the 
original carbon price can effectively improve the prediction accuracy; (c) a single 
prediction model combined with EEMD may not effectively improved prediction 
accuracy; (d) the combined model performs better than the single prediction model 
using variance-covariance method. (e) the proposed model provides a new idea for 
carbon price prediction. The proposed method is expected to provide useful 
reference for policymakers to predict carbon price. Finally, the proposed model only 
considers historical data, but the carbon price has strong non-stationarity and 
nonlinearity. Therefore, in the following research, in addition to the historical price, 
the influence of other influencing factors on carbon price should also be considered, 
such as oil price, weather factors, exchange rate and so on. 
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