
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-48-

Recognition of Steel Surface Defects Based on Broad
Learning System

Zhonghao Qiu1, Xixin Yang1,2,a,*, Yuanlin Guan3,4,b,*, Xiang Yuan1

1College of Computer Science & Technology, Qingdao University, Qingdao, China
2School of Automation, Qingdao University, Qingdao, China
3Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education,
Qingdao University of Technology, Qingdao, China
4School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao, China
ayangxixin@qdu.edu.cn, bguanyuanlin@qut.edu.cn
*Corresponding author

Abstract: With the development of Industry 4.0, real-time industrial inspection has been widely focused.
Steel is a critical material, and steel surface defect recognition is of great significance to the production
in plants. However, defect recognition models are usually based on deep learning methods, which leads
to long training time and high hardware requirements. Hence, this article proposes a novel recognition
scheme for steel surface defects based on Broad Learning System (BLS). This model takes the image
features extracted by the convolutional neural network as input data and inherits the advantages of the
BLS, which can classify images quickly. The results indicate that the new method outperforms both the
original BLS and several mainstream algorithms.

Keywords: Steel Surface, Defect Recognition, Broad Learning System, Convolutional Neural Network,
Incremental Learning, Dropout Method

1. Introduction

In numerous industries including manufacturing, energy, and transportation, steel plays a critical role
as a common material. Unfortunately, factors such as equipment fatigue and external forces can lead to
the emergence of diverse defects on the surface of steel, such as patches, inclusions and scratches [1].
These defects directly impact the load-bearing capacity and service life of steel products and can even
initiate chain reactions, posing significant safety hazards [2]. Hence, the timely inspection of these defects
holds immense importance.

Surface defect recognition in the context of steel is predominantly carried out through manual
classification [3, 4]. However, to enhance efficiency and mitigate production costs, there is a growing
impetus for automating the recognition of steel surface defects. Consequently, the proficient
implementation of artificial intelligence for accurately classifying surface defects in steel has emerged as
a prevailing necessity in industrial plants [5].

Konovalenko et al. [6] utilized the deep residual neural network to construct a model for high-precision
surface defect recognition. The hybrid network architecture (CNN-T) [7] integrated Convolutional Neural
Network (CNN) and Transformer encoder, exhibiting strong inductive biases and global modeling
capability. In scenarios where surface defect samples are scarce, a dual-stream neural network [8]
introduced sample generation and transfer learning methods, exploring the use of CNN to enhance the
quality of generated defect images. The Concurrent Convolutional Neural Network (ConCNN) [9] tackled
this issue by leveraging various image scales and a fusion strategy, and can learn new incoming defect
types online. Some studies have focused on feature representation. Fu et al. [10] introduced a compact yet
effective CNN model that emphasizes learning low-level features of defect images and tested it on a
diversity-enhanced dataset. The Feature-aware Network (FaNet) [11] adopted a feature-attention
convolution module to extract the comprehensive feature information from the base classes.

Nonetheless, a significant drawback of these existing approaches is their heavy reliance on substantial
amounts of time and resources for model training. As a consequence, the application of these approaches
becomes challenging in small and medium-sized plants that possess limited hardware capabilities.

Residual Network (ResNet) [12] is a deep convolutional neural network architecture proposed by

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-49-

Kaiming He et al., and it is also an important milestone in the field of computer vision. ResNet enables
the seamless propagation of information between network layers, thereby enhancing model accuracy and
generalization capability. However, it still inherits the common challenge of lengthy training time
associated with deep neural networks.

Broad Learning System (BLS) [13] is a novel machine learning model introduced by Prof. C. L. Philip
CHEN in 2018, based on the Random Vector Functional Link Neural Network (RVFLNN). Unlike
conventional deep learning approaches, BLS addresses the challenges of lengthy training time and high
hardware requirements by employing a broad structure and fast computation methods. However, it has
been observed that training and testing BLS solely using raw data may not fully harness its performance
potential.

Building upon previous research, this paper presents an innovative machine learning methodology
for the inspection of steel surface defects, leveraging a fusion of the Broad Learning System and the
convolutional neural network ResNet-18. This approach facilitates swift and precise recognition, with
the capacity for ongoing enhancement.

2. Related Work

2.1. ResNet-18 Network

The ResNet series networks are widely used in computer vision tasks because of their superior
performance. Due to the introduction of residual blocks, the degradation caused by the increase in the
number of layers is well resolved by ResNet.

The key distinguishing factor among ResNet networks, which include ResNet-18, ResNet-34 and
ResNet-50, is the number of layers within each network. ResNet-18 is comparatively shallow, as shown
in Figure 1. It demonstrates similar performance to other ResNet networks, while having the capability
to preserve a greater amount of low-scale features. Considering the hardware limitations of small and
medium-sized plants, as well as the practical performance of the model, ResNet-18 has been chosen for
application in this paper. The selection rationale will be further discussed in the experimental and result
analysis section.

Figure 1: Residual Network (ResNet-18) structure.

2.2. Basic Model of Broad Learning System

Compared to deep networks, the BLS exhibits a simpler structure, primarily consisting of mapped
feature nodes, enhancement nodes, and output weights.

The input data is denoted as 𝑋𝑋, which passes through the model and generates multiple groups of
mapped feature nodes through mapping.

𝑍𝑍𝑖𝑖 = 𝜙𝜙�𝑋𝑋𝑊𝑊𝑒𝑒𝑖𝑖 + 𝛽𝛽𝑒𝑒𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑛𝑛 (1)

where 𝑍𝑍𝑖𝑖 denotes the 𝑖𝑖th group of mapped feature nodes, 𝑊𝑊𝑒𝑒𝑖𝑖 and 𝛽𝛽𝑒𝑒𝑖𝑖 are the random weights and
biases with the proper dimensions, and 𝜙𝜙 indicates linear transformation. 𝑍𝑍𝑛𝑛 = [𝑍𝑍1, … ,𝑍𝑍𝑛𝑛] is the
concatenation of 𝑛𝑛 groups of mapped feature nodes, on which the enhancement nodes are generated.

𝐸𝐸𝑗𝑗 = 𝜉𝜉 �𝑍𝑍𝑛𝑛𝑊𝑊ℎ𝑗𝑗 + 𝛽𝛽ℎ𝑗𝑗� , 𝑗𝑗 = 1, … ,𝑚𝑚 (2)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-50-

where 𝐸𝐸𝑗𝑗 represents the 𝑗𝑗 th group of enhancement nodes, 𝑊𝑊ℎ𝑗𝑗 and 𝛽𝛽ℎ𝑗𝑗 denote the random
weights and biases respectively, with the appropriate dimensions. The variable 𝜉𝜉 indicates linear
transformation. Thus, the concatenation of 𝑚𝑚 groups of enhancement nodes is denoted as 𝐸𝐸𝑚𝑚 =
[𝐸𝐸1, … ,𝐸𝐸𝑚𝑚].

The number of nodes per group 𝑣𝑣 and the number of groups 𝑛𝑛 for mapped feature nodes, as well
as the number of nodes per group 𝜂𝜂 and the number of groups 𝑚𝑚 for enhancement nodes in the BLS,
are selected based on the complexity of the specific task.

𝑌𝑌 = �𝑍𝑍1, … ,𝑍𝑍𝑛𝑛|𝜉𝜉�𝑍𝑍𝑛𝑛𝑊𝑊ℎ1 + 𝛽𝛽ℎ1�, … , 𝜉𝜉�𝑍𝑍𝑛𝑛𝑊𝑊ℎ𝑚𝑚 + 𝛽𝛽ℎ𝑚𝑚��𝑊𝑊 (3)

= [𝑍𝑍1, … ,𝑍𝑍𝑛𝑛|𝐸𝐸1, … ,𝐸𝐸𝑚𝑚]𝑊𝑊

= [𝑍𝑍𝑛𝑛|𝐸𝐸𝑚𝑚]𝑊𝑊

= 𝐻𝐻𝑊𝑊

Formula (3) represents the basic model of BLS, where 𝐻𝐻 is the concatenation of all mapped feature
nodes and enhancement nodes, while 𝑌𝑌 denotes the data labels. 𝑊𝑊 corresponds to the output weights,
which serves as the training objective as well. A graphical depiction of this model is illustrated in Figure
2.

Figure 2: Basic model of Broad Learning System (BLS).

To solve for the output weights, 𝑊𝑊 , that minimize the training error, ridge regression can be
employed, as shown in Formula (4).

𝑊𝑊 = �𝐻𝐻
T(𝑐𝑐𝑐𝑐 + 𝐻𝐻𝐻𝐻T)−1𝑌𝑌, 𝐾𝐾 < 𝐿𝐿

(𝑐𝑐𝑐𝑐 + 𝐻𝐻T𝐻𝐻)−1𝐻𝐻T𝑌𝑌, 𝐾𝐾 ≥ 𝐿𝐿
 (4)

where 𝐿𝐿 = 𝑛𝑛𝑛𝑛 + 𝑚𝑚𝜂𝜂 represents the total number of mapped feature nodes and enhancement nodes,
while 𝐾𝐾 denotes the number of input samples. Parameters 𝑐𝑐 and 𝑐𝑐 correspond to the regularization
factor and 𝐿𝐿-order unit matrix, respectively.

3. Proposed Models

3.1. Convolutional Broad Learning System

In response to the problem that existing steel surface defect recognition models are inefficient to train
and rely on high-specification hardware to the extent that they are difficult to deploy in most plants, we
propose a fusion model called Convolutional Broad Learning System (C-BLS). The specific structure of
the proposed model is illustrated in Figure 3.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-51-

Figure 3: Convolutional Broad Learning System (C-BLS) structure.

Firstly, the surface defect dataset is partitioned into three distinct sets: training data, validation data,
and testing data. Data augmentation techniques are applied to the training data to enrich its diversity and
enhance its utility. Concurrently, the original training data and validation data are merged to create a
unified dataset for training the BLS.

Next, the data augmented training data and validation data are input into the ResNet-18 for initial
training. Unlike traditional CNN models that require numerous epochs to achieve high accuracies, this
process is intentionally kept brief. The objective here is to equip ResNet-18 with basic feature extraction
capabilities rather than focusing extensively on this step, as it is not directly utilized for the classification
task.

Following the initial training, stage1 to stage5, along with the global average pooling layer in ResNet-
18, are encapsulated as an encoder. This encoder is employed to extract features from the image data.
The global average pooling layer compresses the feature maps of each channel into a single value while
preserving important feature information, significantly reducing the data volume.

Subsequently, the merged training data is fed into the encoder to extract image features and generate
a training feature matrix. To ensure smooth input into the BLS, the matrix undergoes format conversion
by removing two redundant dimensions. Simultaneously, the labels are transformed into a one-hot
encoded matrix. Finally, both matrices, denoted as 𝑋𝑋 and 𝑌𝑌, are input into the BLS for training at once.
This mechanism is fast and efficient. Once training concludes, the random weights, random biases, and
connection weights are fixed and will be used for the testing phase. The specific testing method will be
introduced in the next section.

C-BLS is the fundamental model proposed by us for surface defect recognition. In C-BLS, the image
data is not directly incorporated into the BLS. Instead, it undergoes a feature extraction process through
a convolutional structure, resulting in a feature matrix that contains important location information. This
approach addresses the issue of inadequate learning that arises when image data is directly fed into the
BLS for image classification tasks, as observed in previous studies. Leveraging the robust learning
capabilities of the BLS, the recognition performance of C-BLS surpasses that of ResNet-18 after initial
training. Notably, the C-BLS training is efficient and does not rely on advanced hardware support. By
resorting to the solution of the ridge regression problem, it can be performed on most standard computer
systems.

3.2. Convolutional Broad Learning System with Dropout Incremental Learning

In the testing process of C-BLS, the encoder performs feature extraction on the testing data,

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-52-

generating a testing feature matrix. After undergoing format conversion, the matrix is input into BLS in
a single iteration, and the final recognition result is obtained by computing it with the random weights,
random biases, and connection weights determined during the training process.

However, when the accuracy of the recognition result does not meet the desired criteria, further
reinforcement of the model is necessary to enhance its performance. Incremental learning is a commonly
employed approach in this regard. In the case of BLS, incremental learning is achieved by adding nodes.
The unique structure of the BLS makes it particularly suitable for incremental learning, enabling the
rapid computation of connection weights for the new nodes. The addition of enhancement nodes
represents the most used approach for incremental learning within the BLS [14].

The integration of incremental learning introduces complexity to the BLS, particularly when dealing
with smaller datasets, as it can lead to the prevalent issue of overfitting. This problem is prominent in
small-scale plants where acquiring a significant amount of training data is challenging.

To address this issue, this paper proposes integrating the Dropout [15] method into C-BLS during the
incremental learning process, resulting in the construction of Convolutional Broad Learning System with
Dropout Incremental Learning (CDIL-BLS). This approach involves randomly hiding nodes added to the
BLS model, thereby improving the accuracy and robustness of the model. The BLS component of CDIL-
BLS is illustrated in Figure 4.

Figure 4: The BLS component of the Convolutional Broad Learning System with Dropout Incremental

Learning (CDIL-BLS) model.

In the incremental learning without Dropout method, once the basic BLS model is trained,
enhancement nodes are introduced by adding new columns to the matrix 𝐻𝐻. These newly added nodes
are generated using the enhancement node generation method. The concatenation of these new nodes
with the original nodes can be expressed as

𝐻𝐻′ = �𝐻𝐻|𝜉𝜉�𝑍𝑍𝑛𝑛𝑊𝑊ℎ𝑚𝑚+1 + 𝛽𝛽ℎ𝑚𝑚+1�� (5)

= [𝐻𝐻|𝐸𝐸𝑚𝑚+1]

where 𝑊𝑊ℎ𝑚𝑚+1 and 𝛽𝛽ℎ𝑚𝑚+1 represent the newly generated random weights and biases, respectively.

To incorporate the Dropout method, in each round of incremental learning, a (0, 1) vector Θ of
length equal to the number of newly added enhancement nodes is generated using the Bernoulli function.
This vector assigns a value of 0 to some elements and 1 to the remaining elements, with a probability
of 𝑝𝑝. Subsequently, a square matrix 𝐴𝐴 is created, where each row consists of the same elements as the
vector Θ. The matrix 𝐸𝐸𝑚𝑚+1 is then multiplied by the square matrix 𝐴𝐴 to apply the Dropout mechanism.
In order to preserve the mathematical expectation of the newly added nodes, it is necessary to scale the
nodes after the Dropout process. Consequently, the new concatenation in the connection weight
calculation is given by

𝐻𝐻′𝐷𝐷 = [𝐻𝐻|𝐸𝐸𝑚𝑚+1 × 𝐴𝐴 ∕ (1 − 𝑝𝑝)] (6)

At this stage, the newly generated enhancement nodes are analogous to the nodes in the upper layer
of the Dropout structure. They undergo multiplication and scaling using the square matrix 𝐴𝐴 to become
the nodes after Dropout processing, while the subsequent layer consists of the data labels 𝑌𝑌.

The inclusion of the Dropout method weakens the dependency between the nodes in the BLS, so that
the overfitting phenomenon that occurs in incremental learning is fully suppressed. The problem of small
and medium-sized plants that have difficulty in obtaining ideal training results due to the lack of sufficient
training samples can also be solved using this scheme.

The next step involves calculating the new connection weights using the results obtained from the

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-53-

previous computations. Thanks to the intricate structure of BLS, this process requires only a few
calculations to derive the updated results. It can be expressed as

𝑊𝑊′ = �𝑊𝑊 − 𝐷𝐷𝐵𝐵T𝑌𝑌
𝐵𝐵T𝑌𝑌

� (7)

where

𝐷𝐷 = (𝐻𝐻′𝐷𝐷)+𝜉𝜉�𝑍𝑍𝑛𝑛𝑊𝑊ℎ𝑚𝑚+1 + 𝛽𝛽ℎ𝑚𝑚+1� (8)

𝐵𝐵T = �
(𝐶𝐶)+ , 𝐶𝐶 ≠ 0
(1 + 𝐷𝐷T𝐷𝐷)−1𝐵𝐵T(𝐻𝐻′𝐷𝐷)+, 𝐶𝐶 = 0 (9)

𝐶𝐶 = 𝜉𝜉�𝑍𝑍𝑛𝑛𝑊𝑊ℎ𝑚𝑚+1 + 𝛽𝛽ℎ𝑚𝑚+1� − 𝐻𝐻′𝐷𝐷𝐷𝐷 (10)

The symbol ()+ represents the pseudo-inverse of the matrix.

Thus, a round of incremental learning for CDIL-BLS is completed. By continuously iterating this
process, the desired model and optimal results can be obtained. The testing and incremental learning
process described earlier is depicted in Figure 5.

Figure 5: Testing and incremental learning process for CDIL-BLS.

4. Experiments and Analysis of Results

The experiments in this paper utilize the Keras neural network library in Python 3.10 and are
conducted on the Windows 11 operating system. The CPU employed is an AMD Ryzen 7 5800H 3.20
GHz, accompanied by 16 GB of RAM. Additionally, a NVIDIA GeForce RTX 3050 Laptop GPU with
4GB VRAM is utilized.

4.1. Dataset

The experiments use NEU-CLS [16], a classification task dataset sourced from the Northeastern
University surface defect database. This dataset comprises six common surface defect images found in
hot-rolled steel strips, namely rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface (PS),
inclusion (In), and scratches (Sc), as shown in Figure 6. The dataset consists of a total of 1800 grayscale
images, with 300 samples available for each type of surface defect.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-54-

Figure 6: Types of surface defects on hot-rolled steel strip.

This dataset shows the actual situation of real-life production environments. It is important to note
that different surface defect types may exhibit similar morphologies despite originating from distinct
causes. Additionally, significant variations can exist within images depicting the same defect type, such
as differences in depth, direction, and the number of scratches. Moreover, due to inconsistent lighting
conditions in plants, the captured images display substantial variations in brightness. These factors
contribute to the complexity of the dataset, posing challenges in training the model effectively.

4.2. Experiment Results

In this section, we comprehensively evaluate the superior performance of the proposed method in
many aspects: effectiveness of the improvements, parameter sensitivity, comparative results with some
mainstream methods, recognition effect for each type of defect, and incremental learning.

4.2.1. Ablation Experiments

To validate the effectiveness of our improvements, we conduct ablation experiments on C-BLS,
comparing it with the original ResNet-18 and BLS. The training batch size of ResNet-18 is set to 32, the
optimizer is stochastic gradient descent, and the learning rate is 0.001. In the case of BLS, all data is
input simultaneously during both the training and testing processes. The number of mapped feature nodes,
denoted as 𝑛𝑛 × 𝑣𝑣, is set to 10×5, while the number of initial enhancement nodes 𝑁𝑁3 (i.e., 𝑚𝑚 × 𝜂𝜂) is
set to 40. These values are selected based on subsequent discussions and evaluations. The regularization
coefficient 𝑐𝑐 and shrink coefficient 𝑠𝑠 are 2×10-30 and 0.8, respectively.

Table 1: Results of ablation experiments.

Model Accuracy (%) Training time (s) Training epochs Testing time
(s/sample)

ResNet-18 96.85 2.68×102 26 2.83×10-3
BLS 47.50 8.32 1 2.88×10-4

C-BLS 98.06
ResNet-18

initial training 1.07×102 10 2.79×10-3
BLS training 1.12×10-1 1

The accuracy, training time, training epochs, and testing time of the three models are presented in
Table 1. ResNet-18 achieved its highest accuracy, reaching 96.85% after 26 epochs of training, which
took 268 seconds. According to the original method, the pixel values of each image in the dataset were
taken out by rows and directly input to BLS for training and testing, resulted in significantly lower
accuracy of only 47.50%. In contrast, C-BLS employed 10 epochs of initial training using ResNet-18,
followed by BLS training. This combined approach took a total of 108 seconds and achieved an accuracy
of 98.06%. Compared to ResNet-18, C-BLS demonstrated a 59.70% reduction in training time while
improving accuracy by 1.21%.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-55-

The disadvantage that deep learning models tend to fall into local optima caused ResNet-18’s
recognition performance to improve slowly in the middle and late stages of training. On the other hand,
while BLS exhibited shorter training and testing time compared to the other two models, its practical
applicability was limited due to its low accuracy. We think that the pixel data extracted by rows lost
crucial positional information within the images, leading to inadequate feature learning by BLS. The
combination approach of C-BLS effectively addressed these issue, resulting in improved performance.

4.2.2. Parameter Sensitivity Experiments

In order to determine the optimal depth of ResNet, a crucial hyperparameter in C-BLS, ResNet-18,
ResNet-34 and ResNet-50 were experimented with BLS to form C-BLS, respectively, and the results are
illustrated in Figure 7. Additionally, two earlier proposed CNN models were used as comparisons in the
experiments.

Figure 7: Experimental results of C-BLS formed by different Convolutional Neural Networks (CNNs).

The figure depicts the total training time for each C-BLS as well as the corresponding accuracies
achieved through training. Each individual data point represents the C-BLS formed by a specific CNN
after different epochs of training. Notably, the C-BLS formed by ResNet-18 exhibited an accuracy close
to 95% after just one epoch of training. As the number of training epochs increased, the accuracy of this
combination continued to improve, reaching a peak of 98.06% in the 10th epoch, with a training time of
108 seconds.

In contrast, the C-BLS formed by ResNet-34 showed comparatively lower effectiveness for a
significant portion of the training period. By the 7th epoch, with a training time of 121 seconds, it
achieved an accuracy of 96.94%. On the other hand, the C-BLS formed by ResNet-50 demonstrated
gradually improving performance, but it required 140 seconds for 5 epochs of training, and its accuracy
only reached 94.17% at that point. Furthermore, the C-BLS formed by AlexNet or Visual Geometry
Group model (VGG-16) consistently struggled to surpass the 95% accuracy threshold. Considering the
hardware limitations of most small and medium-sized plants and the desire to minimize model training
time, ResNet-18 undoubtedly emerges as the optimal choice for constructing C-BLS.

To observe the effect of the number of mapped feature nodes (𝑛𝑛 × 𝑣𝑣) and the number of initial
enhancement nodes (𝑁𝑁3) on the accuracy in C-BLS, we conducted experiments by adjusting the
parameters within the following ranges: {1×10, 2×10, 3×10, 4×10, 5×10, 6×10, 7×10} for 𝑛𝑛 × 𝑣𝑣, and
{10, 20, 30, 40, 50, 60, 70} for 𝑁𝑁3. The results of these experiments are presented in Figure 8. With the
increase of the number of mapped feature nodes, the accuracy of C-BLS rose first and then decreased
slightly. The highest accuracy was achieved when utilizing 10×5 mapped feature nodes. Similarly, with
the increase of the number of initial enhancement nodes, the accuracy also tended to rise first and then
decrease, roughly conforming to the normal distribution. The peak accuracy was attained when the
number of initial enhancement nodes was set to 40.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-56-

Figure 8: Effect of the number of mapped feature nodes and the number of initial enhancement nodes

on the accuracy in C-BLS.

4.2.3. Comparison Experiments

We further compare the presented method with common algorithms that can be used for image
recognition, including K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) in machine
learning, as well as AlexNet, VGG-16, GoogLeNet and Dense Convolutional Network (DenseNet-121)
in deep learning.

Table 2: Results of comparison experiments.

Model Accuracy (%) Training time (s) Training epochs Testing time
(s/sample)

KNN 85.76 1.00×10-3 1 6.11×10-5
SVM 90.61 2.79×10-1 1 3.61×10-5

AlexNet 97.50 2.21×102 37 7.57×10-3
VGG-16 96.67 1.25×103 31 1.65×10-2

GoogLeNet 97.22 3.70×102 31 1.20×10-2
DenseNet-121 97.78 2.98×102 23 1.37×10-2

C-BLS 98.06
ResNet-18

initial training 1.07×102 10 2.79×10-3
BLS training 1.12×10-1 1

As shown in Table 2, the accuracies of the two machine learning algorithms KNN and SVM were
85.76% and 90.61%, respectively, for the experiments using the surface defect dataset. The data of the
four deep learning algorithms were selected to be counted in the table when their accuracies reached the
peaks. Among them, VGG-16 took the longest time to train, much longer than the other three, and had
the lowest accuracy among the four. GoogLeNet reached 97.22% accuracy after 31 epochs of training,
taking 370 seconds. AlexNet's training time was the shortest among the four deep learning algorithms,
totaling 221 seconds, but still 2.1 times longer than C-BLS. This algorithm achieved an accuracy of
97.50%, which was 0.56% different from C-BLS. The accuracy of DenseNet-121 is close to that of C-
BLS, but its training time is still long at 298 seconds.

The training and testing time of the two machine learning algorithms were extremely short due to the
relatively rudimentary computational processes involved. However, these algorithms failed to effectively
capture the semantic information contained within the images, which ultimately impeded their
performance breakthrough. In comparison to commonly employed deep learning algorithms, C-BLS was
able to maintain the best training time and achieve a high level of accuracy. This can be attributed to its
ability to avoid local optima in the later stages of deep learning and effectively feed image features into
the BLS for recognition.

4.2.4. Incremental Learning Experiments

To evaluate the performance improvement of the Dropout incremental learning on C-BLS, we
constructed C-BLS models using ResNet-18 and AlexNet, respectively, and conducted experiments with
both the original incremental learning method and DIL. The total number of enhancement nodes in all

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-57-

models gradually increased from the initial 40 to 115, with an incremental addition of 5 enhancement
nodes in each iteration, totaling 15 iterations. The experimental results are shown in Figure 9.

Figure 9: Accuracies during the incremental learning process.

Both CDIL-BLS models demonstrated an increasing trend in accuracy during the incremental
learning process, achieving approximately a 1.5% improvement compared to the basic models at their
peak performance. Notably, the CDIL-BLS model constructed with ResNet-18 achieved an accuracy of
99.44% when the total number of enhancement nodes reached 95. In contrast, the C-BLS models using
the traditional incremental learning method exhibited a downward trend in accuracy, with occasional
minor improvements that overall deviated from the intended direction. This discrepancy can be attributed
to the overfitting issue caused by the complexity of the models. CDIL-BLS addresses this problem by
utilizing the Dropout method, allowing the added enhancement nodes to effectively enhance the model’s
performance.

5. Conclusions

In this paper, the C-BLS is constructed to accomplish the task of classifying steel surface defects in
steel production process. It achieves fast training and accurate recognition on the steel surface defect
dataset with the feature extraction capability of ResNet-18 and the efficient learning capability of BLS.
The optimal configuration of the CNN model and BLS node number was determined through parameter
sensitivity experiments. Comparative experiments demonstrated that C-BLS met the standards for
practical applications and exhibited training speeds several times faster than deep learning algorithms.

To further improve the model's performance, the CDIL-BLS is constructed by incorporating the
Dropout incremental learning into C-BLS. Incremental learning in CDIL-BLS is achieved by adding
enhancement nodes using the BLS flexible incremental learning algorithm combined with the Dropout
method. The accuracy of CDIL-BLS gradually increased during the incremental learning process,
surpassing that of C-BLS, which suffered from overfitting issues due to using the original incremental
learning method.

The proposed solution in this paper ensures high model performance while minimizing the hardware
resource requirements and training time consumption, making it suitable for applications in small and
medium-sized plants.

References

[1] Song, G., Song, K., & Yan, Y. (2020). EDRNet: Encoder–decoder residual network for salient object
detection of strip steel surface defects. IEEE Transactions on Instrumentation and Measurement, 69(12),
9709-9719.
[2] Satish, R., Murugabhoopathy, K., Rajendhiran, N., & Vijayan, V. (2020). Technology strategy for
improved safety management in steel industry. Materials today: proceedings, 33, 2660-2664.
[3] Wen, X., Shan, J., He, Y., & Song, K. (2022). Steel surface defect recognition: A survey. Coatings,

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 2: 48-58, DOI: 10.25236/AJCIS.2024.070207

Published by Francis Academic Press, UK
-58-

13(1), 17.
[4] Zhao, W., Chen, F., Huang, H., Li, D., & Cheng, W. (2021). A new steel defect detection algorithm
based on deep learning. Computational Intelligence and Neuroscience, 2021, 1-13.
[5] Demir, K., Ay, M., Cavas, M., & Demir, F. (2023). Automated steel surface defect detection and
classification using a new deep learning-based approach. Neural Computing and Applications, 35(11),
8389-8406.
[6] Konovalenko, I., Maruschak, P., Brezinová, J., Viňáš, J., & Brezina, J. (2020). Steel surface defect
classification using deep residual neural network. Metals, 10(6), 846.
[7] Li, S., Wu, C., & Xiong, N. (2022). Hybrid architecture based on CNN and transformer for strip steel
surface defect classification. Electronics, 11(8), 1200.
[8] Zhang, J., Li, S., Yan, Y., Ni, Z., & Ni, H. (2022). Surface Defect Classification of Steel Strip with
Few Samples Based on Dual‐Stream Neural Network. Steel research international, 93(5), 2100554.
[9] Liu, Y., Yuan, Y., Balta, C., & Liu, J. (2020). A light-weight deep-learning model with multi-scale
features for steel surface defect classification. Materials, 13(20), 4629.
[10] Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M. Y., & Cao, Y. (2019). A deep-learning-based
approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering, 121,
397-405.
[11] Zhao, W., Song, K., Wang, Y., Liang, S., & Yan, Y. (2023). FaNet: Feature-aware network for few
shot classification of strip steel surface defects. Measurement, 208, 112446.
[12] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[13] Chen, C. P., & Liu, Z. (2017). Broad learning system: An effective and efficient incremental learning
system without the need for deep architecture. IEEE transactions on neural networks and learning
systems, 29(1), 10-24.
[14] Gong, X., Zhang, T., Chen, C. P., & Liu, Z. (2021). Research review for broad learning system:
Algorithms, theory, and applications. IEEE Transactions on Cybernetics, 52(9), 8922-8950.
[15] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving
neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580.
[16] Bao, Y., Song, K., Liu, J., Wang, Y., Yan, Y., Yu, H., & Li, X. (2021). Triplet-graph reasoning network
for few-shot metal generic surface defect segmentation. IEEE Transactions on Instrumentation and
Measurement, 70, 1-11.

	2.1. ResNet-18 Network
	2.2. Basic Model of Broad Learning System
	3.1. Convolutional Broad Learning System
	3.2. Convolutional Broad Learning System with Dropout Incremental Learning
	4.1. Dataset
	4.2. Experiment Results

