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Abstract: Micro-expressions (ME) are involuntary, fleeting facial cues that reveal hidden emotions in
high-stakes situations. They provide valuable insights into an individual's true psychological state and
have a wide range of applications in psychology, law enforcement, and human-computer interaction.
Traditional ME recognition relies on hand-crafted features, but recent advances in deep learning have
made end-to-end recognition possible, greatly accelerating research progress. This paper reviews deep
learning-based micro-expression recognition (MER), covering dataset construction, pre-processing,
feature enhancement, and the evolution of network architecture. It also compares single-stream, multi-
stream, and multimodal fusion models, summarizes loss strategies, and discusses current challenges and
future research trends. This review aims to provide a systematic perspective to promote the development
and practical reliability of MER.
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1. Introduction

Micro-expressions (MEs) are fleeting, involuntary facial movements that occur when individuals
attempt to conceal genuine emotions under high-pressure or high-stakes situations. The concept of micro-
expressions (MEs) was first introduced by Haggard and Isaacs (1966)!, who identified them in
psychotherapy video recordings as manifestations of repressed emotions and initially referred to them as
“rapid expressions”. Later, Ekman and Friesen (1969), while analyzing video footage of a psychiatric
patient with suicidal tendencies, observed extremely brief facial movements that reflected concealed
emotions. They formally defined these fleeting facial behaviors as “micro-expressions”. They provide
valuable cues to a person's true psychological state and have broad applications in psychology, national
security, clinical diagnosis, and human-computer interaction. Due to their extremely brief duration
(typically 1/25-1/5s), low intensity, and localized manifestation, MEs are difficult to observe with the
naked eye, making their automatic recognition an active research topic in computer vision.

With advancements in deep learning, micro-expression recognition (MER) has evolved from
traditional manual feature methods such as LBP-TOP [ and optical flow to end-to-end frameworks using
convolutional, looping, and neural networks. These methods realize the joint extraction and multimodal
fusion of spatiotemporal features, which greatly improves the recognition accuracy. However, challenges
remain, including limited dataset size, between-subject variations, and generalization across
documentation conditions. Therefore, this study aims to provide a comprehensive review of deep
learning-based MER research.

2. Dataset

During the collection of micro-expression databases, participants are typically instructed to maintain
a neutral facial expression while viewing emotion-inducing videos, thereby eliciting spontaneous micro-
expression. Existing micro-expression databases primarily fall into two categories: early databases and
laboratory-based spontaneous databases. The former, such as the York-DDT, Polikovsky and USF-HD
databases, predominantly rely on participants mimicking or rapidly performing expressions. The latter
capture spontaneous micro-expression through emotional induction, such as SMIC, the CASME series,
SAMM, MMEW), and the latest CAS(ME)* . Table 1 presents the distinctions among these datasets.
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2.1. Early databases

York-DDT (2009)3!: This was the first database related to lie detection, involving 20 participants.
Researchers played two video clips, one designed to elicit an emotional response and the other lacking
emotional induction. Participants were instructed to describe the first clip as “deceptive” and the second
as “truthful”. This study supported the theory of non-verbal leakage. However, the database contains
substantial extraneous head and facial movements, resulting in high noise levels that render it unsuitable
for precise micro-expression recognition research.

Polikovsky Database (2009)B1: Captured using a Point Grey Grasshopper camera at 480 X 640
resolution and 200 fps (RAWS mode). This database is not publicly available, and limited information
exists regarding it, such as the undisclosed total sample size. During collection, ten participants were
instructed to “imitate” micro-expression. This performative data lacks genuine ecological validity,
constituting its primary shortcoming.

USF-HD (2011)": Contains 181 macro-expression and 100 micro-expression samples, captured
using JVC-HD100 or Panasonic AG-HMC40 cameras at 720 X 1280 resolution and approximately 29.7
fps. Although the dataset is slightly larger than York-DDT and Polikovsky, it still contains a significant
amount of imitation and lacks authenticity.

2.2. Common databases

SMIC (2013)P): Released by the University of Oulu, Finland, comprising 20 subjects. Data was
synchronously captured using three distinct cameras: (O High-speed camera (HS, 100 fps, 640 X 480,
164 samples); @ Standard visible-light camera (VIS, 25 fps, 71 samples); &) Near-infrared camera
(NIR, 25 fps, 71 samples). All data were captured as full-face frontal views, categorized into positive,
negative, and surprise emotional states. The database's strength lies in its multimodal acquisition, though
it features a limited range of emotional categories.

CASME (2013)[l: Developed by the Institute of Psychology, Chinese Academy of Sciences,
involving 35 participants. Of these, 19 produced valid micro-expression, yielding a total of 195 samples.
Data acquisition comprises two classes: Class A (BenQ M31, 1280 X 720, 60 fps, 100 samples) and Class
B (Point Grey GRAS-03K2C, 640 X480, 60 fps, 95 samples). Emotion categories comprised eight types:
Pleasure, Contempt, Disgust, Fear, Sadness, Surprise, Suppression, and Tension.

CASME 1I (2014)": An upgraded version of CASME, containing 247 samples from 26 subjects.
Captured using Point Grey GRAS-03K2C at 200 fps, 640x480 resolution, with facial region cropped to
280x%340. Emotion labels comprise 5 categories: disgust, pleasure, surprise, suppression, and other,
alongside onset, apex, and offset frame annotations plus action unit (AU) labelling. This database,

characterized by its high frame rate and meticulous annotation, has become the most frequently used
benchmark for MER.

CAS(ME)?*(2017)1"): Constructed from 22 subjects using a Logitech C920 camera (30 fps, 640x480).
The dataset comprises 300 macro-expressions and 57 micro-expressions categorized as positive, negative,
surprise, and other. Its distinctive feature is the inclusion of “long videos” making it suitable for combined
research on micro-expression spotting and recognition.

SAMM (2016)®1: Developed by a UK team, comprising 159 samples from 32 participants. Recorded
using a Basler Ace acA2000-340km high-speed camera (200 fps, 2040x1088) with an LED array to
eliminate AC flicker. Seven emotional categories: anger, sadness, contempt, disgust, fear, joy, and
surprise. The database's strengths lie in its coverage of 13 ethnicities, strong racial diversity, and
annotation by FACS experts.

MEVIEW (2019)P!: Collected from YouTube videos (e.g., poker tournaments, television interviews),
comprising 31 video segments from 16 individuals. This database represents in-the-wild scenarios,
holding significant practical value. However, due to its small sample size and high video noise, it is
currently primarily used for exploratory research.

MMEW (2020)!': Collected by a Chinese team, comprising 300 micro-expressions and 900 macro-
expressions from over 40 participants. Resolution: 1920X 1080, frame rate: 90 fps. Micro-expression
and macro-expressions originate from the same participants, facilitating cross-modal research.

CAS(ME)’ (2023)!1]: Recently released by the Institute of Psychology, Chinese Academy of Sciences,
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this is currently the largest multimodal micro-expression database. It comprises 216 participants,
approximately 943 micro-expressions, and 3,143 macro-expressions, spanning over 80 hours of footage.
Captured modalities include RGB images, depth maps, audio (48 kHz), and physiological signals (EDA,
ECG, RSP, PPG), providing invaluable resources for cross-modal research.

Table 1: Summary of micro-expression datasets.

Dataset Sub | Resolution FR Face size Expression
640x480 Hap(5), Dis(88), Fea(2), Sad(6),
CASME | 35 1 1og0x720 | 0 15090 Sur(20), Rep(40), Ten(28), Con(3)
Hap(33), Dis(60), Sur(25),
CASMEII | 26 640%480 200 250%340 Rep(27), Oth(102)
CAS(ME)* | 22 640x480 30 - Hap(51), Sur(43), Neg(70), Oth(19)
Hap(992), Dis(2528), Fea(892),
CAS(ME)® | 247 | 1280x720 30 - Ang(619),
Sad(635), Sur(1208), Sur(1208), Oth(251)
SMIC 16 640x480 100 190x230 Pos(51), Neg(70), Sur(43)
2040108 Hap(24), Sur(13), Sur(20), Dis(8),
SAMM 32 3 200 400%400 Fea(7). Sad(3), Oth(84)

Hap(6), Ang(2), Sur(9), Dis(1), Fea(3),
MMVIEW | 16 | 720x1280 30 - Unc(13).Con(102)

1920x128 Hap(36),Ang(8), Sur(80), Dis(72),
MMEW | 36 0 90| 400x400 Fea(16),Sad(13), Oth(102)

Sub = subjects, Hap = happiness, Ang = Anger, Sur = Surprise, Fea = Fear, Sad = Sadness, Dis = Disgust,
Pos = Positive, Neg = Negative, Rep = Repression, Con = Contempt, Ten = Tense, Unc = Unclear, Oth

= others.

3. Pre-processing and Feature Enhancement

Pre-processing serves as a crucial stage that bridges raw data acquisition and effective feature learning.
Through procedures such as face detection, alignment, motion amplification, and illumination
normalization, it aims to eliminate redundant variations and highlight subtle facial movements essential
to micro-expression recognition. In addition, certain feature enhancement techniques further amplify
discriminative motion cues and improve the robustness of subsequent learning stages. Together, these
processes lay a solid foundation for the following feature extraction and representation learning stages.

3.1. Face Detection and Alignment

In the facial preprocessing stage, face detection and face alignment are two critical steps ensuring the
successful execution of micro-expression recognition. The former primarily addresses the question of
“where is the face?” by swiftly and accurately locating facial regions within images or videos to eliminate
background interference. The latter tackles “how to standardize the face?” through key point localization
and geometric normalization. This reduces the interference of variations in pose, lighting, and expression
on subsequent feature extraction. The process of the micro-expression recognition is shown in Figure 1.

Pre-processing
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Figure 1: The whole process of micro-expression recognition
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3.1.1. Face Detection Technology

In the field of face detection, research methodologies have evolved from traditional approaches to
deep learning. The early Viola-Jones algorithm (Viola & Jones, 2001)!'?], based on Hair features and
cascaded AdaBoost classifiers, achieved real-time face detection but lacked robustness to pose and
illumination variations. Subsequently, researchers introduced detection methods grounded in statistical
modelling, such as skin tone modelling and geometric feature detection. However, these approaches
proved constrained by complex backgrounds and have consequently seen reduced application in micro-
expression recognition (MER). In recent years, deep learning approaches have increasingly become
mainstream. Among these, MTCNN (Multi-task Cascaded CNN) (Zhang et al., 2016)!*] employs a
cascaded multi-task network to achieve face detection and coarse alignment, finding widespread adoption
in preprocessing for databases such as CASME II and SAMM. Additionally, detectors based on deep
convolutional networks, such as RetinaFace!'¥ and Face++!!'*!, have demonstrated high robustness.
Overall, deep learning approaches have become the mainstream choice for facial detection in MER due
to their advantages in complex backgrounds, pose variations, and occlusion conditions.

3.1.2. Face Alignment Methods

Following face detection, the detected facial regions require alignment to mitigate the impact of pose
and expression variations. Early approaches primarily relied on statistical modelling. For instance, the
Active Shape Model (ASM)'®! constrained key point locations by constructing shape models, while the
Active Appearance Model (AAM)!'”) further integrated texture information to model the overall facial
appearance. These approaches were commonly employed in preprocessing for early databases like
CASME and SMIC, yet exhibited sensitivity to lighting and occlusion. To enhance alignment accuracy,
researchers proposed lightweight regression-based methods such as Constrained Local Model (CLM) [18],
In recent years, deep learning approaches have gained prominence. TCDCN (Tasks-Constrained Deep
CNN)[! employs multi-task learning to enhance landmark localization, while DAN (Deep Alignment
Network)?®! progressively refines landmarks through cascaded regression, while HRNet?!! maintains
high-resolution features for refined alignment. These approaches demonstrate superior robustness and
accuracy in experiments on databases such as CASME II and SAMM, significantly enhancing the
reliability of region of interest (ROI) segmentation and subsequent feature modelling.

3.2. Motion Magnification

A key challenge with micro-expressions lies in their minute amplitude, rendering subtle facial muscle
movements difficult to observe. Consequently, motion magnification techniques have become a crucial
step in enhancing micro-expression detectability. Currently, primary motion amplification methods
include Eulerian Video Magnification (EVM), Lagrangian Motion Magnification and deep learning-
driven amplification approaches.

3.2.1. EVM

Eulerian Video Magnification (EVM)?!l originally developed by the Massachusetts Institute of
Technology (MIT), operates by decomposing video sequences into spatial pyramids and applying
temporal bandpass filtering to pixel intensity variations.

Within the context of micro-expression recognition, EVM serves two primary functions. First, it
amplifies subtle local facial muscle movements. Second, it strengthens fine-grained dynamic features,
improving the sensitivity of feature extraction techniques to minor motion cues. Nevertheless, EVM
entails considerable computational complexity and remains sensitive to noise, illumination fluctuations,
and unintended motion. Excessive magnification factors may further introduce artifacts or false motion,
underscoring the necessity for careful parameter optimization and integration with complementary
processing techniques.

3.2.2. LMM

Lagrangian Motion Magnification (LMM) differs from Eulerian methods in that it directly amplifies
subtle facial expressions based on the motion trajectories of pixels or feature points. Its fundamental
principle involves tracking key points or local regions within facial sequences, calculating displacement
changes over time, and applying magnification at the motion trajectory level. Flotho et al. 22! employed
key techniques including forward deformation and optical flow fine-tuning in their local Lagrangian
motion magnification method, significantly improving the accuracy and reliability of micro-expression
amplification Notably, Global Lagrangian Motion Magnification (GLMM)™?*! achieves more stable
overall facial dynamic enhancement by applying consistent global tracking and magnification across the
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entire face. For micro-expression recognition, LMM/GLMM effectively amplifies subtle displacements
in local regions such as eyebrows, corners of the mouth, or eyes. However, this method relies heavily on
the accuracy of motion tracking. Errors can arise when head movement or occlusion occurs, leading to
diminished amplification effects.

3.3. Temporal Normalization

The duration of micro-expression varies considerably, typically ranging from tens to hundreds of
milliseconds. Directly feeding these raw sequences into feature extraction or classification models may
result in redundant information within longer sequences and insufficient dynamic information in shorter
ones, thereby compromising recognition performance. Consequently, temporal normalization emerges as
a critical step in micro-expression preprocessing. The most classical approach is the Temporal
Interpolation Model (TIM)?%, which employs graph embedding techniques to interpolate sequences on
a low-dimensional manifold. However, TIM is prone to introducing redundancy or spurious motion when
over-interpolating.

4. Method

The introduction of deep learning has brought significant advances to micro-expression recognition
(MER). Compared to traditional handcrafted feature descriptors (such as LBP-TOP and HOG), deep
models can automatically learn high-level semantic features through an end-to-end approach, better
capturing subtle and transient emotional shifts. In recent years, researchers have advanced deep learning
studies in MER on two fronts: firstly, at the module level, focusing on the feature learning capabilities of
different network components; secondly, at the model architecture level, exploring how to organize and
integrate diverse modules within the overall system to form higher-level representations

4.1. Network Modules

Feature extraction, as the core component of the micro-expression recognition process, directly
determines the model's ability to perceive, model, and discriminate facial expression signals. In micro-
expression recognition tasks, common network modules such as CNN, RNN, 3DCNN, and Transformer
each possess distinct advantages and applicable scenarios.

4.1.1. CNN

Convolutional neural networks?> were the earliest deep learning modules adopted in MER research.
Figure 2 illustrates the architecture of the Convolutional Neural Network (CNN). Early studies utilized
apex frames or key frames as input, extracting spatial texture features through two-dimensional
convolutions, and combined these with fully connected layers or traditional classifiers to accomplish
recognition. The primary breakthrough of this approach lay in replacing traditional manual feature
extraction with automatic learning, significantly enhancing feature discriminability. To overcome
overfitting issues arising from data scarcity, researchers commonly employ transfer learning strategies,
adapting pre-trained networks such as VGG or ResNet to MER tasks. Some studies further incorporate
difference images, optical flow maps, or dynamic images to endow CNNs with temporal sensitivity
within static structures. While the introduction of CNN modules demonstrates the efficacy of deep
features in micro-expression recognition, their capacity for dynamic modelling remains limited,
capturing only spatial-level facial changes.
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Figure 2: CNN model diagram
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4.1.2. 3D-CNN

As research progressed, three-dimensional convolutional neural networks(3DCNN)2% were proposed
to simultaneously model spatial and temporal features. Figure 3 compares and contrasts 3D convolution
with 2D convolution. Three-dimensional convolutions enable learning of local motion patterns across
spatiotemporal domains, thereby more accurately capturing subtle variations in micro-expressions across
their onset-apex-offset phases. On high-frame-rate datasets such as CASME II and SAMM, 3D-CNNs
demonstrate markedly superior performance to 2D CNNS, particularly in recognizing low-intensity and
suppressed emotions. To enhance model robustness, several approaches combine temporal interpolation
with motion amplification techniques to mitigate the impact of sparse samples during training.
Nevertheless, the high computational cost and substantial parameter count of 3D convolutional networks
remain significant bottlenecks.

]

|
VALY

|

(a) 2D convolution (b) 3D convolution

Figure 3: 2D convolution and 3D convolution
4.1.3. RNN

Recurrent neural networks(RNNs)?7! and their variants are primarily employed for time series
modelling in MER. Figure 4 illustrates the architecture of the Recurrent Neural Network (RNN). A
typical architecture adopts the CNN-RNN framework: CNNs extract spatial features from individual
frames, while RNNs (typically LSTM?® or GRUs) capture temporal dependencies. This integration
enables the model to learn contextual information about facial expression changes from consecutive
frames, demonstrating particular efficacy in recognizing subtle movements during dynamic transitional
phases. To enhance temporal awareness, some studies employ bidirectional LSTMs to capture both
forward and backward temporal dependencies. Others introduce temporal attention modules, assigning
higher weights to key frames near the apex. While such architectures offer advantages in dynamic
modelling, their serial computation mechanism results in inefficient training and susceptibility to gradient
vanishing issues with lengthy sequences.
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Figure 4: RNN Model diagram
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4.1.4. Transformer

In recent years, the introduction of Transformer modules has brought novel approaches to global
modelling in MER. Through self-attention mechanisms, Transformers® can capture global temporal
dependencies, overcoming the limitations of convolutional and recurrent structures in local modelling.
Figure 5 illustrates the architecture of the Transformer. In specific implementations, researchers typically
treat frame-by-frame CNN features or spatiotemporal patches as input tokens, learning dependencies
between different frames or regions via multi-head attention layers. Some studies have integrated spatial
and temporal attention mechanisms, enabling models to focus both on key facial regions (such as muscle
groups corresponding to AUs) and critical moments of expression change. Experimental results
demonstrate the Transformer's exceptional generalize capability across database tasks (e.g., CASME II
—SAMM). By integrating self-supervised learning, contrastive learning, and meta-learning strategies,
the Transformer further enhances model robustness under small-sample conditions. Concurrently, its
attention visual properties provide interpretable support for model or decision-making.
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Figure 5: Transformer Model diagram.
4.2. Model Architectures

The practical challenges confronting micro-expression recognition tasks include sparse sample
quantities, extremely subtle expression magnitudes, and inadequate model generalization capabilities
across different individuals. Consequently, model architecture design must not only focus on enhancing
expressive capacity but also consider computational efficiency, parameter scale, and robustness. Recent
research indicates that rational network structure design can effectively improve model performance
under limited data conditions.

4.2.1. Single-Stream Architectures

The single-stream architecture represents the most fundamental form of deep learning framework
within MER, where models perform end-to-end modelling from input to classification through a single
pathway. Early CNN?], 3D-CNNs!?°l, and CNN-RNNss all belong to this category. Its advantages lie in
structural simplicity and controllable parameters, enabling stable training on limited datasets. As model
complexity increased, researchers introduced hybrid convolutional blocks and multi-layer attention
mechanisms into single-stream architectures to enhance dynamic modelling capabilities within
constrained computational resources.

Chen et al. (2020)B3% proposed the Spatiotemporal Convolutional Network with Convolutional Block
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Attention Module (CBAM-STCNN), which is an exemplary optimization of a single-stream model. This
model embeds channel and spatial attention mechanisms into a single 3D convolutional network,
enabling it to adaptively focus on key spatiotemporal features of micro-expressions without relying on a
multi-stream design, achieving efficient and accurate recognition.

Gajjala et al. (2021)1" proposed MERANet (3D Residual Attention Network), which also belongs to
an advanced single-stream architecture. This network deeply integrates 3D residual learning with a
hybrid attention mechanism, ensuring gradient flow and feature reuse through residual connections while
refining features using attention, significantly enhancing the ability to capture subtle motion information.

Liu et al. (2022)P? designed the SQU-C3D model, which is a single-stream network. Its core
innovation lies in the keyframe sampling strategy: first, the lightweight SqueezeNet is used to locate the
vertex frame that best represents the strength of micro-expression, and then the sequence consisting of
three keyframes, the start, vertex frame, and end frame, is input into the C3D network to efficiently learn
the spatiotemporal characteristics of micro-expression.

Wang et al.(2023)P% developed HTNet (Hierarchical Transformer Network), a single-stream
architecture that effectively captures expressions from local subtle features to global co-motion by
dividing faces into four key regions and performing hierarchical attention and block aggregation within
the network.

4.2.2. Multi-Stream Architectures

As research progressed, scholars increasingly recognized that a single information source struggles
to comprehensively characterize micro-expressions. Multi-stream architectures consequently emerged as
a novel research direction. The most typical two-stream network comprises an appearance stream and a
motion stream: the former processes RGB images to capture texture features, while the latter processes
optical flow maps or dynamic images to model motion characteristics. Subsequently, multi-stream
networks have progressively expanded into tri-stream or multi-modal configurations, integrating depth
images, thermal infrared imagery, audio signals, or physiological data to achieve more comprehensive
emotional analysis.

Khor et al. (2019)B34 proposed the Dual-Stream Shallow Network (DSSN), which adopts a typical
dual-stream heterogeneous architecture. This network constructs a pair of lightweight convolutional
neural networks to process different motion feature inputs (such as optical flow magnitude and optical
strain magnitude) separately, and performs feature fusion in the later stages of the network, effectively
combining the advantages of different motion representations and improving recognition performance
while maintaining parameter lightweight.

Liong et al. (2019)1*3 proposed the Shallow Triple Stream Three-dimensional CNN (STSTNet),
extending the multi-stream architecture into three-dimensional space. This model uses three parallel
shallow 3D CNNs to process the original sequence, horizontal optical flow, and vertical optical flow
separately, extracting spatiotemporal features from different dimensions and finally fusing them,
decomposing and capturing facial movement patterns in a more refined manner.

Li et al. (2022)13% proposed the deep local-global network (DLHN). The network consists of two
parallel subnetworks: HCRNN focuses on extracting local, fine spatiotemporal features from multiple
regions of interest (ROIs) on the face, and gradually extracts local features at different scales through
hierarchical convolutional structure. RPRNN uses robust principal component analysis (RPCA)
technology to extract global and sparse micro-expression motion information.

Zhu et al. (2024)B7 proposed a three-stream temporal offset attention network (SKD-TSTSAN) based
on self-knowledge distillation, which includes static spatial flow, local space, and dynamic temporal flow,
and further optimized the feature learning ability through self-knowledge distillation technology.

4.2.3. Multimodal Fusion Frameworks

Most existing micro-expression recognition (MER) research has focused on learning features
sensitive to facial expressions. However, in the real world, micro-expressions are often intertwined with
various factors such as subject identity and action units (AUs). Approaches tailored solely to a single
MER task fail to fully use facial information. The multimodal fusion method is conceptually broader
than the multi-stream model, emphasizing the integration of data modalities with greater intrinsic
differences (such as visual features and physical motion features, data distribution in different databases)
to solve more complex problems such as generalization.

Zhou et al. (2019)B38 proposed the Dual-Inception Network, focusing on addressing the challenge of
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cross-database recognition, which can be seen as a fusion aimed at data distribution modalities. This
network utilizes multi-scale feature extraction and domain adaptation techniques to reduce distribution
differences between different databases, improving the model's generalization ability on unseen data.

The hierarchical spatiotemporal attention model (HSTA) proposed by Hao et al. (2024)13% represents
a recent advancement in multimodal fusion technology. The model adopts a hierarchical architecture
design and includes two core innovation modules: the single-modal spatiotemporal attention (USTA)
module performs internal feature extraction and temporal relationship modeling for video frames and
special frames (such as vertex frames) respectively; The Cross-Modal Spatiotemporal Attention (CSTA)
module realizes deep intelligent information fusion through the cross-attention mechanism, so that the
features of one modality (such as special frames) can actively query and enhance the features of another
modality (such as video frames).

4.3. Loss function

Within deep learning frameworks, loss functions not only determine the convergence direction of
models but also directly influence the distribution patterns within feature spaces. Micro-expression
recognition is characterized by substantial intra-class variation, minimal inter-class distinction, and
uneven data distribution. Consequently, designing appropriate loss functions is crucial for enhancing
recognition accuracy.

Presently, most MER models still employ Softmax cross-entropy loss“% as their primary optimization
objective, enabling end-to-end classification under known category conditions. However, reliance solely
on Softmax often fails to guarantee sufficient feature discriminative power and generalization capability.
Consequently, researchers have proposed various metric learning and marginal constraint loss approaches
to address this limitation.

Centre loss*!l represents another prevalent enhancement approach. By penalizing the distance
between deep features and their corresponding class centers, center loss constrains intra-class feature
aggregation, thereby enhancing discriminative power. Furthermore, addressing the common long-tail
distribution issue in micro-expression datasets, researchers introduced Focal Loss. This method
effectively mitigates bias from class imbalance by increasing the attention weight on hard-to-classify
samples. The MER-GCN model further builds upon Focal Loss by designing an adaptive factor to
dynamically adjust the weight of positive and negative samples within training batches, thereby
achieving more balanced gradient updates.

5. Future and Outlook

Despite deep learning's significant advancement in micro-expression recognition (MER), limitations
persist in data scarcity, cross-database generalization, interpretability, and practical application. Future
research should deepen efforts in constructing high-quality databases and weak supervision learning,
mitigating data scarcity through multimodal acquisition, self-supervised learning, and generative models.
At the model level, cross-domain generalization and adaptability should be enhanced, leveraging domain
adaptation and meta-learning to achieve robust feature representations. This approach simultaneously
enhances model interpretability and lightweight performance through action unit (AU) analysis, attention
visualization, and knowledge distillation, thereby achieving efficient and transparent decision-making.
Furthermore, it expands the application boundaries of Multimodal Emotion Recognition (MER) via
multimodal and multi-task fusion, enhancing its practical value and societal significance in psychological
assessment, human-computer interaction, and affective computing.
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