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Abstract: Based on the threat to user privacy posed by intelligent vehicle networks, this paper proposes 
an intelligent vehicle wireless communication attack detection algorithm based on air interface traffic 
identification. The technique determines whether there is a threat to user privacy by monitoring the 
vehicle network communication signals, analyzing the signals and the type of business being carried, 
and combining the type of business with whether it has the attribute of steganography attack, which 
includes location tracking, wireless eavesdropping and video echo of eavesdropping. Using the software 
radio platform, the wireless air interface electrical signals are collected and transmitted to the signal 
analysis platform, and the neural network model based on the CNN model achieves the identification of 
the three types of traffic: audio, image and video, and the accuracy of the simulation experiment results 
is 90.34%. 
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1. Introduction 

The development of intelligent vehicles and the popularity of mobile communication services have 
greatly facilitated people's lives, but at the same time introduced a new type of network security risks. 
Compared with traditional vehicles, the current smart vehicles are equipped with intelligent operating 
systems, audio and video sensors, and high-speed wireless communication modules. By exploiting the 
vulnerabilities of the operating system, attackers can obtain the operating privileges of the audio and 
video and wireless communication modules, for example, by using Trojan horse attacks, implanting a 
stealing device inside the vehicle, and other illegal means to obtain the user's private information. Remote 
control of vehicle operation status is also carried out, for example, Miller and Valasek [1], researchers in 
the field of smart car security, demonstrated the process of remote attack targeting the infotainment 
system of a JEEP Cherokee car to achieve remote control of the car's steering wheel, brakes, and engine 
in the 2015 DEFEND conference.Woo et al [2] used a mobile phone APP to connect to the OBD 
diagnostic interface module device inside the car via WiFi to attack the ECU node inside the car to 
achieve the effect of changing the dashboard display, switching off the engine, etc. Francillon et al [3] 
used the relay information between the car and the smart car key to successfully enter the interior of the 
vehicle and start the vehicle by using a repeater. Based on the above problems, in-vehicle operating 
systems and various types of sensors have become the main channels for user information leakage. For 
this reason, detecting and identifying unauthorised mobile terminals and steganographic attacks based 
on mobile communication links are of great significance to the development of smart vehicles. 

For the monitoring of wireless communication attacks, existing technical methods include obtaining 
mobile communication traffic data in a specific region through a mobile network operator and performing 
analysis, such as obtaining downlink network traffic, port number, and resource allocation information 
in a specific region on the base station side, and detecting abnormal steganographic transmission 
behaviour through a traffic identification model. Typical schemes include port number-based analysis, 
which completes traffic type [4], protocol analysis [5] anomaly detection [6] based on port rules 
developed by the Internet Corporation for Assigned Names and Numbers , which is low in computational 
complexity but gradually loses its effectiveness with the popularity of port obfuscation and forwarding 
techniques [7]. Subsequently, researchers used Deep Packet Inspection (DPI) method to analyse and 
match the traffic datagrams to distinguish different flows [8], the algorithm has high accuracy but high 
computational complexity, and with the update of encryption protocols, the administrators are gradually 
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unable to obtain the data content of the traffic packets [9]. Subsequent researchers have also proposed 
the encrypted traffic algorithm based on statistical features, which analyses the header data of encrypted 
packets by mean, variance and standard deviation, and adopts machine learning methods such as SVM, 
Random Forest, and Plain Bayes to classify the encrypted traffic [10]. However, the algorithm has a short 
timeliness and needs to be constantly updated when the mobile terminal is upgraded or changes occur. 
The above methods need to be processed based on IP data, and this type of data needs authorisation from 
the operator to be obtained, which makes it difficult to obtain experimental data and also poses a threat 
to user privacy. 

Aiming at the above problems, this paper proposes an algorithm for detecting wireless 
communication attacks on intelligent vehicles based on air interface traffic identification, which uses air 
interface interaction signals to detect and identify uplink traffic based on the characteristics of the 
resource blocks occupied by the air interface signals. For abnormal video and audio traffic, the software 
radio is used to collect the air interface signals and obtain the time-frequency resource map to achieve 
the identification of service types. The work in this paper includes collecting IQ sample data, drawing 
time-frequency resource maps according to the time and frequency resource granularity of air interface 
signal transmission by the existing Vehicle Networking physical layer protocols, identifying the time-
frequency resource structure of different types of services by summarising the different time-frequency 
resource structures and change trends, and learning the time-frequency resource features by using CNN 
neural network training, combining the physical layer resource block power information and the link 
layer time-frequency resource scheduling information to achieve multi-terminal service identification 
within the vehicular network. The work in this paper no longer needs to demodulate the uplink signal, is 
completely based on IQ sample analysis, has low computational complexity, passively collects 
electromagnetic signals in the air, does not require the cooperation of operators, does not resolve to obtain 
user information, and does not pose a threat to user privacy. 

2. Wireless Attack Detection Model for Telematics 

 
Figure 1: Modelling Wireless Steganography Attacks on Smart Vehicles. 

In this paper, we take the example of steganography attack against user's private information to 
illustrate the car networking attack scenario, as shown in Figure 1. Intelligent vehicles are equipped with 
an operating system with 5G wireless communication technology in the driving area, which not only has 
the function of high-speed transmission of information, but also can connect to various types of servers, 
such as navigation, video, and audio APP servers through base station signal transmission. At the same 
time, the vehicle operating system is mostly based on Android system, the eavesdropper can use the 
loopholes that exist in the Android system [11], through remote installation of Trojan viruses and other 
illegal means to obtain access to sensitive data such as audio, video, and vehicle operation information 
in the vehicle central control, and even use the vehicle's own 5G communication module wireless 
transmission technology back to the eavesdroppers in the database, which poses a threat to the user's 
privacy. 

For the above steganography attack scenarios, in order to protect the privacy of users, this paper will 
install the air interface signal acquisition equipment and traffic analysis equipment in the vehicle. The air 
interface signal acquisition equipment is based on a software radio receiver, which continuously monitors 
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and collects the upstream and downstream interaction signals between the vehicle intelligent wireless 
terminal and the base station. And the collected data is transmitted back to the traffic monitoring and 
analysis equipment to analyse whether the air interface signal contains abnormal uplink audio and video 
traffic. 

For the attacker, this paper assumes that it has the ability to obtain terminal control privileges, such 
as implanting a malicious Trojan horse to obtain privileges in the process of vehicle repair and 
maintenance. The control privileges include audio and video acquisition and the invocation of wireless 
communication modules. The attacker can use the wireless link can remote control to start the attack and 
stop the attack. For example, during the time range when the user is not using the vehicle, by obtaining 
the operating privileges of the wireless transmission module, the acquired user information is transmitted 
back. For the monitoring of abnormal traffic at the air interface, this paper assumes that it knows the 
communication frequency band of the vehicle intelligent terminal and the base station, and it can collect 
the traffic of various APPs in the vehicle with the assistance of the user, and actively learn the upstream 
and downstream signal time-frequency occupancy behaviours corresponding to the traffic as the basis 
for distinguishing and judging the abnormal traffic. 

 
Figure 2: Data Processing Procedure. 

As shown in figure 2,The signal acquisition module includes an antenna and a signal receiver for 

receiving the wireless communication signal s(t): ,where the carrier 
frequency fc varies with time. The received radio frequency signal is reduced to the intermediate 
frequency, and the digital baseband positive classification and digital baseband in-phase components are 
obtained through a digital low-pass filter, which are respectively recorded 

as: , , Then through the time-frequency conversion 
module, discrete Fourier transform is performed on the received signal: 

, Where g(t) is the window function, m is the length 
of the window function, * is the complex conjugate, T ( > 0) is the sampling period of the time variable, 
F ( > 0) is the sampling period of the frequency variable, m and n are integers .Combine the transformed 
data into a time-frequency waterfall , as Figure 3 shown below: 

 
Figure 3: Time-frequency Waterfall Chart. 

Since the IQ samples are too large to be processed by ordinary computers, after the data collection is 
completed, the collected data are transferred to the server via FileZilla for data processing, and the data 
processing flow is shown in Figure 3. First of all, short-time Fourier transform (STFT) is applied to the 
IQ data, and its main parameters are shown in Table 1. The main parameters are shown in Table 1. Among 
them, the window overlap is to make the spectrum energy more concentrated and reduce the spectrum 
leakage. According to Parseval's theorem, the power calculation in the time domain is converted to the 
frequency domain to reduce the complexity of calculation. Finally, the time-frequency resource map is 
performed according to the horizontal and vertical coordinate granularity specified by the physical layer 
communication protocol of Telematics. 
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Table 1: Drawing Parameters of Time-Frequency Resource Map 

Parametric size 
Window length 2048 

Overlap 1024 
FFT Number of points 2048 

Sampling rate 30.72M 
In this paper, the air interface steganography traffic monitoring and analysis system is set into three 

operation modes: learning mode, time-sharing focused monitoring and full-time intelligent monitoring. 
Firstly, users can use the learning mode of the system to back up the legitimate traffic types within the 
intelligent vehicle in advance, which serves as the basis for the system to judge the abnormal traffic. 
Secondly, the time-sharing focused monitoring mode can set the monitoring time according to the 
different needs of users and monitor the intelligent vehicles within a specific time range. Finally, the full-
time intelligent detection mode, based on the data samples already available in the first two learning 
modes, can operate within an all-weather time range, actively analyse the types of traffic within the 
intelligent vehicle, analyse different types of traffic and types of business, and actively identify and screen 
out abnormal traffic through the traffic monitoring and analysis platform, which can provide users with 
a reliable guarantee of information security within an arbitrary time range. The full-time intelligent 
detection mode uses an artificial neural network model to actively learn different traffic types, which can 
screen out abnormal traffic in a wider range, and has stronger learning capability and business type 
expansion capability than the time-sharing focused monitoring mode. 

3. CNN neural network based air interface traffic analysis algorithm 

Based on the differences in spectrum of different service types of services, service type identification 
is completed according to the shape of the time-frequency resource map and the trend of change in the 
number of features, and feedback of the service type identification results is carried out when the 
accuracy of service type identification is lower than 90% until the identification accuracy meets the 
algorithm requirements. This process converts the multi-terminal and multi-service recognition task into 
single terminal and single service recognition, reducing the complexity of the algorithm. The data 
includes three different business types, QQ, WeChat, and Bluetooth, and the audio, video, and picture 
traffic generated by them are recognized respectively. 

3.1. Data Preprocessing 

 
Figure 4: Original Image(a). 

 
Figure 5: Greyscale Histogram of Time-frequency Resource Map ‘a’. 
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Based on a set power threshold that separates those signals with the highest power from other signals, 
an assumption can be made that the monitoring equipment should be able to receive signals with the 
maximum power when there is an abnormal terminal operating inside the vehicle. This assumption is 
based on the relationship between signal power and anomalous terminals because anomalous terminals 
usually communicate with the highest power, so by detecting signals with the highest power, we can look 
for potential anomalies or anomalous devices. This operation is designed to improve the accuracy and 
reliability of anomaly detection for better safety and stability of the in-vehicle environment. In this study, 
considering the computational complexity and the difficulty of implementation, a multi-threshold 
segmentation method is chosen, in which the image is segmented into multiple parts representing 
different terminals by means of several different thresholds. Due to the complexity of the actual 
environment, including the variation of noise and terminal transmitting power, this study realizes the 
adaptive adjustment of the thresholds by means of the gray scale histogram to adapt to different 
environmental conditions. The results are shown in Figures 4 and 5. 

3.2. Data learning 

1) Firstly, the data are processed to generate time-frequency resource maps, and its detailed steps are 
shown in Figure 2; 

2) Import 6000 collected time-frequency resource maps and set the map height and width size to 180 
pixel values, and the number of batch processing is 32 times. Which set the ratio of training dataset and 
test dataset as 8:2, i.e., the training dataset images are 4960 and the test dataset images are 1240. 

3) Normalize the data to ensure that the range of pixel values in the image data in the training dataset 
is limited to the [0,1] interval after normalization. Improve the stability of model training and accelerate 
the convergence speed of the model. 

4) Input the time-frequency resource map into the CNN artificial neural network for feedback 
validation of the uplink signal recognition results, perform model training with Epoch of 80 times, and 
when the recognition probability of the number of model output terminals is lower than 90%, the 
algorithm re-returns to the data processing part, and adjusts the CNN model architecture, such as the 
number of layers of convolutional kernel, the size, the step size, the learning rate, and other parameters 
until the results reach 90% above the validation level. 

At last, the specific model structure is shown in Table 2 and the network structure is shown in Figure 
6. 

 
Figure 6: The Network Structure. 
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Table 2: The Specific Model Structure 

Typology Parametric Convolution 
kernel size 

Number of 
convolution kernels 

Strides activation 
function 

 
 

modelling structure 

COV2D_1 3*3 16 1 relu 
COV2D_2 3*3 32 2 relu 
COV2D_3 3*3 64 1 relu 
COV2D_4 3*3 128 2 relu 
COV2D_5 3*3 256 1 relu 

 
 

hyperparameterisation 

Batch Size 32 
Learning Rate 0.0001 

optimiser Adam 
Epochs 80 

Dropout Rate 0 
Input Layer: The input layer of the model uses a Rescaling layer to normalise the pixel values of the 

image to the range [0, 1]. 

Convolutional Layer (Conv2D): First Convolutional Layer: 16 3x3 convolutional kernels, ReLU 
activation function, "same" padding. Second convolutional layer: 32 3x3 convolutional kernels, ReLU 
activation function, step size (2, 2), "same" padding. Third convolutional layer: 64 3x3 convolutional 
kernels, ReLU activation function, "same" padding. Fourth convolutional layer: 128 3x3 convolutional 
kernels, ReLU activation function, step size (2, 2), "same" padding. Fifth convolutional layer: 256 3x3 
convolutional kernels, ReLU activation function, "same" padding. 

Fully connected layer (Dense layer): after the convolutional layer, the model includes two fully 
connected layers. The first fully connected layer has 256 neurons with ReLU activation function, the 
second fully connected layer has a number of neurons equal to the number of classes (num_classes). 

Optimiser and loss function: the model uses the Adam optimiser with a learning rate of 0.0001 and a 
loss function of SparseCategoricalCrossentropy. 

The performance metric of the model is accuracy.Training cycles (Epochs): the model will be trained 
on the training data for 80 cycles.Total params: 459171 (1.75 MB),Trainable params: 459171 (1.75 
MB) ,Non-trainable params: 0 (0.00 Byte). 

After a large number of experiments, we get the best recognition rate of 90.03%, the model for the 
time-frequency resource map with obvious features can be accurately identified, the results are shown in 
Figure 7, the model in the training process in the training set and the test set of the recognition of the 
accuracy of the steady increase, and the loss rate performance is good, into a downward trend, no 
oversaturation performance. 

 
Figure 7: Trends in Accuracy and Loss Rates for Test and Training Sets. 
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3.3. Evaluation Criteria 

In order to measure the performance of the network, it is difficult to judge the advantages and 
disadvantages of the algorithm by only one index, so this paper adopts the four parameters of Accuracy, 
Precision, Recall and F1 as the evaluation criteria.  

In order to calculate the above four evaluation indicators, it is necessary to first understand the 
following concepts.TP: positive sample predicted as positive category; TN: negative sample predicted as 
negative sample predicted to be in the negative category; FP: negative sample predicted to be in the 
positive category; FN: positive sample predicted to be in the negative category. Based on the above four 
concepts, the four evaluation indicators are calculated as follows: 

                     (1) 

                               (2) 

                                 (3) 

                               (4) 

4. Practical Scenarios and Experimental Analysis  

This subsection introduces abnormal traffic identification, which classifies terminal services into two 
categories, normal and abnormal, by identifying the characteristics of the object for a specific 
classification target. Due to the limited business types in this paper, the theoretical feasibility is 
demonstrated only on the basis of the completed business identification. In the future, more terminal 
business types will be added to meet practical needs. Considering the actual situation, in a particular area, 
authorised terminals can make voice calls through the mobile communication network, but video calls 
and other services are not allowed. After identifying the number of terminals and services using the 
algorithm in this paper, if unauthorised services (e.g. video calls) are found, an alarm will be triggered to 
provide basic conditions for subsequent processing. 

4.1. Experimental Environment Setup 

In order to verify the effect of different environments on the performance of the algorithm, we used 
srsLTE to build a laboratory base station. In order to avoid the interference of data collection by terminals 
in the existing network, we choose the n2 frequency band, which has been realised but not deployed in 
the current network, as the experimental base station according to the 3GPP protocol. The uplink 
frequency point of this band is 1880MHz, and it has been confirmed by the spectrometer test that there 
is no other interfering signal within the 10MHz bandwidth. Therefore, the bandwidth of the experimental 
environment is set to 10 M. According to srsLTE, the base station should be configured with mobile 
phone SIM card information. To achieve this requirement, we used the GRSIMWrite card writing 
software to write the identity information such as the mobile phone IMSI into a programmable white 
card, and installed the white card into the test terminal. On the test terminal, we configured the APN 
information to be srsLTE and verified that the terminal was connected to an analogue base station using 
the IMSI information to ensure the accuracy of the collected data. The acquisition equipment and setup 
were exactly the same as in Section 2. 

4.2. Experimental analysis under different signal-to-noise ratio conditions 

In data processing, this paper takes the signal power as the terminal identification feature, and adopts 
the simplified estimation method of power spectral density, i.e. power/bandwidth, in order to improve 
the frequency resolution and reduce the computational complexity. Considering that the transmit power 
of mobile terminals cannot be controlled, this paper simulates different signal-to-noise ratio 
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environments to verify the generality of the algorithm. 

In this paper, the video resource map is divided into two parts, noise floor and terminal data, and 
processed with the noise floor as the benchmark, and the power value of terminal data is subtracted from 
the noise floor to generate a new time-frequency resource map, which further improves the frequency 
resolution. In this paper, the performance of the algorithm in the range of 10dB to 40dB is verified, and 
the accuracy of the terminal data set on the validation set under different power conditions is 
demonstrated through Figure 8. 

 
Figure 8: Simulation experiments under different signal-to-noise ratio conditions. 

As can be seen from Figure 8 the performance of all networks on the validation set under different 
power conditions is basically the same. In addition, in order to evaluate the algorithm performance more 
comprehensively, this paper also validates the test set by calculating the four evaluation metrics 
introduced in Section 3.3, and the results are shown in Table 3. 

Table 3: Experimental results of simulation under different signal-to-noise ratio conditions. 

SNR(dB) 
Evaluation 
criteria 

10-20 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30 

Accuracy 82.78 85.12 84.65 86.34 85.73 87.21 87.57 88.92 89.43 92.47 
Precision 83.43 86.25 84.77 87.84 85.87 87.46 88.62 90.23 89.32 92.88 

Recall 82.65 85.08 84.22 86.13 85.26 87.11 87.49 88.74 89.36 92.44 
F1 83.65 86.22 84.64 86.56 85.79 87.31 88.54 89.42 89.51 92.76 

By changing the size of the signal transmitting power, the time-frequency resource diagrams under 
different signal-to-noise ratios are produced, and different data are inputted into the model in batches to 
be identified again, and the experimental results in the above table are obtained. According to the chart, 
the results can be obtained, when the signal-to-noise ratio is set to the interval of 10dB-18dB, the 
accuracy of the model prediction results fluctuates greatly, and becomes a wave-like upward trend. When 
the signal-to-noise ratio is 18dB-30dB, the accuracy of the model prediction results increases steadily 
and reaches the maximum value (92.47%) at 30dB, according to which it can be concluded that the 
optimal signal-to-noise ratio interval is within the range of 18dB-30dB. 

4.3. Experimental analysis of image enhancement for similar power values 

 
Figure 9: Original Image(b). 
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Figure 10: Colour enhancement 2x image 'b'. 

In the validation phase of uplink signal identification, this study uses linear enhancement to adjust 
the time-frequency resource maps of terminals with close power values. During the user identification 
process, it is recognised that there are some differences in the power values of different users, which are 
reflected in different colours after generating the time-frequency resource maps. Similar power values 
correspond to similar colours, so we processed the colours of the images to highlight the differences 
between similar powers. We used three channels of RGB to enhance the images and fed two different 
datasets, the original image and the RGB enhancement, into the Terminal Quantity Identification 
Network (Figure9-10). We also used the four evaluation metrics described in Section 3.3 to compare 
network performance, and the experimental results are shown in Table 4. 

Table 4: Experimental Results of Similar Power Time-frequency Resource Map Simulation. 

Evaluation criteria 
Imagery Accuracy Precision Recall F1 

Original Image 90.03 90.52 90.09 90.11 
RGB Enhanced 2x Image 95.29 95.33 95.36 95.32 

4.4. Experimental analysis of increasing interference signals 

 
Figure 11: Original Image(c). 

 
Figure 12: Image after adding an interfering signal to the time-frequency resource map 'c'. 
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In this paper, the python tool is used to batch process the original time-frequency resource map and 
add 1-5 interfering signals in the range of 1 to 5. Figure 11 shows the original time-frequency resource 
map, and Figure 12 shows the time-frequency resource map in the case of adding 1 interfering signal. In 
this paper, the new images under the conditions of different number of interference signals are fed into 
the CNN model again, and the experimental results shown in Figure 13 are obtained with other conditions 
being the same. 

 
Figure 13: Image of the change in accuracy when the interference signal is 1-5. 

The above results are obtained by adding different number of interfering signals to the original picture 
and then inputting them into the model. With the increase of interfering signals, the accuracy of model 
recognition gradually decreases, when the number of interfering signals is 3, the accuracy is lower than 
88% of the verification level (87.34%), the model recognition is affected to a certain extent, with the 
increase of the interfering signals to 4, 5, the accuracy of the model recognition decreases dramatically, 
in the number of interfering signals 5, the accuracy of the recognition of 84.49, which is less than 85% 
of the verification level. Based on the algorithm proposed in this paper, it can cope with abnormal traffic 
detection when the number of interfering signals is less than 4, and when the number of interfering signals 
gradually increases the model needs to be further optimised. 

5. Conclusion 

Aiming at the problem of steganographic anomalous traffic identification for intelligent vehicles, this 
paper proposes an algorithm for communication service identification based on uplink time-frequency 
resource occupancy, uses CNN artificial neural network model training to identify the time-frequency 
resource map features of different service types, completes the work of identifying the video, audio, and 
picture traffic of three different service types, namely, QQ, Wechat, and Bluetooth, and verifies the 
simulation experimental analysis under different signal-to-noise ratios, different RGB data sets and 
different number of interfering signals. The algorithm achieves 90.03% recognition accuracy on the test 
set. In the future, this paper will further improve the algorithm to enhance the recognition accuracy of 
the model, and continue to collect signal features to cope with the detection of anomalous traffic 
recognition in different business types.  
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