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Abstract: This study employed spatial transcriptomics and the BayesSpace method to investigate 
melanoma, enabling accurate classification of tissue cells based on their location. The BayesSpace 
method, combined with clustering analysis, effectively examined spatial transcriptome data. Data 
preprocessing and PCA were conducted to reduce dimensionality, followed by clustering using k-means, 
GMM, and BayesSpace. Among these methods, BayesSpace proved to be the optimal clustering method. 
Marker gene staining verified the clustering results, demonstrating high accuracy and enabling precise 
identification of cell types. This study highlights the superiority of the BayesSpace method in spatial 
transcriptomic analysis and its potential for annotating cell types in biomedical research. The findings 
contribute to melanoma diagnosis and treatment through the identification of characteristic cells, marker 
genes, and therapeutic targets. 
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1. Introduction 

Spatial transcriptomics is a relatively new field that aims to sequence and analyze gene expression 
levels in relation to the spatial organization of cells within tissues. It provides valuable insights into the 
spatial distribution of cellular gene expression, allowing for a more comprehensive understanding of 
tissue biology. 

There are several techniques used in spatial transcriptomics[1], including Laser capture microscopy, 
Fluorescence in Situ hybridization (FISH), Fluorescence in Situ Sequencing (FISSEQ), and spatial 
transcriptomic techniques based on spatial information capture[2]. Each technique has its advantages and 
limitations, and researchers choose the most appropriate one based on their specific experimental needs. 

One well-known and commercialized technology in spatial transcriptomics is 10x Genomics' Visium 
technology[3]. In the Visium workflow, tissue slices are obtained and affixed to a glass slide. The slices 
are then stained to facilitate imaging of the expressed products. Permeabilization treatment is applied to 
allow mRNA to interact with oligonucleotide chains in the spatial capture region, resulting in cDNA 
synthesis. This cDNA is then used to construct a library, which is subsequently sequenced. By analyzing 
the sequencing data, software can determine the original position and gene expression profiles of cells 
within the tissue. 

As the field of spatial transcriptomics has advanced, various institutions and research groups have 
collected and organized datasets, resulting in databases of significant scale. These datasets typically 
include image information, positional information (such as rows and columns of the spots), and data on 
the expression levels of different genes in tissue cells. In this case, relevant datasets that focus on 
melanoma tissue cells would provide information on the spatial organization of gene expression within 
melanoma tissue. 

K-means and GMM are the two most classic methods and have been validated by previous scholars 
as having better clustering performance. However, in the clustering process of the above two methods, 
the location information of cells was not considered, which can easily lead to inaccurate clustering. The 
BayesSpace method introduces spatial coordinate information, so this article compares the three 
clustering methods mentioned above and examines the effectiveness of different clustering methods. 
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2. Methods 

2.1 K-means clustering  

K-means is a method of clustering a set of samples based on distance measurement, which can be 
measured by Euclidean distance or statistical distance. It classifies samples that are closer together by 
calculating the distance between different samples. This method was proposed by James MacQueen in 
1967 and is currently widely used in the fields of signal processing and machine learning. 

Using the k-means clustering method, different data points are randomly divided into k categories in 
advance, and then the categories are adjusted one by one based on the similarity between the samples 
and different clusters; Divide each sample data into the cluster closest to it, and update the centroid mean 
of the newly obtained cluster; Repeat the previous step until the number of iterations is reached or until 
the points within each cluster are as closely connected as possible, which is the best clustering result and 
the final result is obtained. The closeness of samples within a cluster around the mean is defined as 
follows: 

𝐸𝐸 = ∑ ∑ ∥ 𝑥𝑥 − μ𝑖𝑖 ∥22𝑥𝑥∈𝐶𝐶𝑖𝑖
𝑘𝑘
𝑖𝑖=1                            (1) 

Among them, 𝑘𝑘 is the number of clusters, and 𝐶𝐶𝑖𝑖 is an element in class 𝑖𝑖, 𝜇𝜇𝑖𝑖 is the class mean in 
class 𝑖𝑖. 

When selecting the number of clusters, elbow method and contour coefficient method can be used. 

A. Using the elbow method, it is necessary to calculate the SSE of clustering results for different 
numbers of clusters 𝑘𝑘. As the number of clusters increases, the classification becomes finer, and the 
similarity of sample data within the same cluster increases. Therefore, SSE will inevitably decrease, and 
its decreasing trend is to first rapidly decrease and then slowly decrease. Therefore, only the inflection 
point of the descent speed needs to be selected, which is the most suitable number of clusters for the data 
point situation. 

B. To use the contour coefficient method, the Gap statistical method is required: 

𝐺𝐺𝐺𝐺𝐺𝐺(𝐾𝐾) = 𝐸𝐸(log𝐷𝐷𝐾𝐾) − log𝐷𝐷𝐾𝐾                        (2) 

Among them, 𝐷𝐷𝐾𝐾 is the loss function, 𝐸𝐸(log𝐷𝐷𝐾𝐾) is the expectation of 𝐷𝐷𝐾𝐾 logarithm. The K that 
maximizes 𝐺𝐺𝐺𝐺𝐺𝐺(𝐾𝐾) is the optimal number of clusters. 

The clustering results based on the k-means method can be obtained by using the determined number 
of clusters. Based on the above discussion, k-means have the advantages of low computational 
complexity, intuitiveness, and easy implementation. At the same time, it also makes the selection of 
initial clustering centers more important and lacks robustness. 

2.2 GMM clustering (Gaussian Mixture Model) 

The Gaussian Mixture based Model (GMM) considers data as a mixed model of multiple Gaussian 
distributions, treating different Gaussian distributions in the mixed model as a cluster, and using the 
maximum likelihood method to determine sample classification based on the probability of different 
samples being located in each classification cluster. This method was proposed by Friedman and Russell 
in 1997 and improved by Zoran Zivkovic in 2004. It is currently widely used in speech recognition, 
image segmentation, financial data analysis, and bioinformatics. 

The clustering method based on Gaussian finite mixture model can use the EM algorithm. Firstly, 
there is a logarithmic likelihood function: 

𝐿𝐿(Θ ∣ 𝑋𝑋 ) = log𝑃𝑃 (𝑋𝑋 ∣ Θ ) = ∑ �log�∑ α𝑙𝑙𝑁𝑁( 𝑥𝑥𝑖𝑖 ∣∣ μ𝑙𝑙 , Σ𝑙𝑙 )𝑘𝑘
𝑙𝑙=1 ��𝑛𝑛

𝑖𝑖=1             (3) 

Where Θ = {α1, … ,α𝑘𝑘;μ1, … , μ𝑘𝑘; Σ1, … , Σ𝑘𝑘}, 𝛼𝛼𝑙𝑙 represents Gaussian weight, and ∑ α𝑙𝑙𝑘𝑘
𝑙𝑙=1 = 1. 

The purpose is to find: 

Θ𝑀𝑀𝑀𝑀𝑀𝑀 = argmax
Θ

{log𝑃𝑃 (𝑋𝑋 ∣ Θ )}                          (4) 

Using the EM algorithm, there is an iterative relationship as follows: 

Θ(𝑔𝑔+1) = argmax
Θ

�∫ 𝑃𝑃�𝑍𝑍 ∣∣ 𝑋𝑋,Θ(𝑔𝑔) � log𝑃𝑃 (𝑋𝑋,𝑍𝑍 ∣ Θ )𝑑𝑑𝑑𝑑𝑧𝑧 �               (5) 
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Among them, 𝑍𝑍 = {𝑑𝑑1, … , 𝑑𝑑𝑛𝑛} is a hidden variable. 

In the end, we obtained Θ𝑀𝑀𝑀𝑀𝑀𝑀 is as follows: 

α𝑙𝑙
(𝑔𝑔+1) =

∑ 𝑝𝑝� 𝑙𝑙∣∣∣𝑥𝑥𝑖𝑖 ,Θ
(𝑔𝑔) �𝑛𝑛

𝑖𝑖=1

𝑛𝑛
                              (6) 

μ𝑙𝑙
(𝑔𝑔+1) =

∑ 𝑥𝑥𝑖𝑖𝑝𝑝� 𝑙𝑙∣∣∣𝑥𝑥𝑖𝑖 ,Θ
(𝑔𝑔) �𝑛𝑛

𝑖𝑖=1

∑ 𝑝𝑝� 𝑙𝑙∣∣∣𝑥𝑥𝑖𝑖 ,Θ
(𝑔𝑔) �𝑛𝑛

𝑖𝑖=1
                             (7) 

Σ𝑙𝑙
(𝑔𝑔+1) =

∑ �𝑥𝑥𝑖𝑖−μ𝑙𝑙
(𝑖𝑖+1)��𝑥𝑥𝑖𝑖−μ𝑙𝑙

(𝑖𝑖+1)�
𝑇𝑇
𝑝𝑝� 𝑙𝑙∣∣∣𝑥𝑥𝑖𝑖 ,Θ

(𝑔𝑔) �𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝� 𝑙𝑙∣∣∣𝑥𝑥𝑖𝑖 ,Θ
(𝑔𝑔) �𝑛𝑛

𝑖𝑖=1

                      (8) 

Based on the above discussion, the GMM method considers the conditional probability of different 
clustering clusters for each data point, while relaxing the assumption of data distribution and being able 
to handle more complex structured data. The maximum likelihood method provides interpretable 
statistical significance. However, this method still has certain shortcomings, as its clustering effect on 
high-dimensional data is not good. If you want to use this method, you need to first reduce the 
dimensionality of high-dimensional data to obtain more accurate results. At the same time, due to its high 
computational complexity, the efficiency is low when dealing with large amounts of data. 

2.3 BayesSpace clustering 

BayesSpace is a Bayesian statistical method that can enhance spatial transcriptome data and make 
clustering results more accurate. Compared with traditional methods such as FISH, this method uses 
multivariate t-distribution to model the low dimensional gene expression matrix. Meanwhile, by applying 
the Potts model to merge spatial information, it ensures that adjacent points are divided into different 
clusters. This method draws on mature spatial statistical methods in the field of image analysis, 
effectively utilizing spatial information to improve resolution to the subplot level, enhance the 
performance of spatial data clustering, and improve the problem of low resolution in traditional methods. 
This method was proposed by the Raphael Gottardo team[4]. A method for spatial clustering based on 
Markov random field and MCMC method[5]. 

2.3.1 Data preprocessing 

Firstly, perform logarithmic transformation on the original gene expression. The reason for 
performing logarithmic transformation is that there is a significant difference in the expression quantity 
of different genes, and there is a large amount of gene expressions are around 0. Using logarithmic 
transformation can reduce the gaps among different gene expressions. 

The data used in the article was obtained through the 10xGenomics website 
(https://www.10xgenomics.com/), which is one of the most commonly used gene sequencing platforms. 

2.3.2 Constructing a spatial clustering model 

We use a spatial clustering method with a Markov random field, which has the following formula: 

𝑦𝑦𝑖𝑖|𝑑𝑑𝑖𝑖 = 𝑘𝑘,𝑤𝑤𝑖𝑖~𝑁𝑁(𝑦𝑦𝑖𝑖; μ𝑘𝑘,𝑤𝑤𝑖𝑖−1Λ−1)                          (9) 

Among them, 𝑦𝑦𝑖𝑖 represents the low dimensional representation of the gene expression vector, 𝑑𝑑𝑖𝑖 ∈
{1, … , 𝑞𝑞} represents different clustering clusters, 𝜇𝜇𝑘𝑘 represents the average vector of the k-th cluster, Λ 
is the accuracy matrix, and 𝑤𝑤𝑖𝑖 is the unknown factor. Meanwhile, we assume that the common precision 
matrix is unconstrained. 

For the number of clusters 𝑞𝑞, it is usually inferred based on biological knowledge, combined with 
clustering image features, to select the number near the elbow. For 𝜇𝜇𝑘𝑘 , Λ, and 𝑤𝑤𝑖𝑖 , there is prior 
information as follows:  

μ𝑘𝑘~𝑁𝑁(μ0,Λ0−1)                               (10) 

Λ~𝑊𝑊𝑖𝑖𝑊𝑊ℎ𝐺𝐺𝑎𝑎𝑡𝑡𝑑𝑑(α,diag(β)𝑑𝑑−1)                         (11) 

𝑤𝑤𝑖𝑖~Γ �
𝑣𝑣
2

, 𝑣𝑣
2
�                                   (12) 

Among them, μ0 is the empirical mean vector, and Λ0, α, and β are fixed parameters as weak 
priors. 
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Additionally, it is assumed that 𝑦𝑦𝑖𝑖 and 𝑤𝑤𝑖𝑖 are independent of each other. Under this assumption, it 
can be observed that when 𝑤𝑤𝑖𝑖  is marginalized, the normal likelihood follows a multidimensional t-
distribution with an average value of 0 and a covariance matrix of 𝑣𝑣

𝑣𝑣−2
Λ−1. 

When estimating parameters, the MCMC method can be used. The final formula for the Markov 
random field is as follows: 

π(𝑑𝑑𝑖𝑖) = 𝑒𝑒
γ

|<𝑖𝑖𝑖𝑖>|×2∑ 𝐼𝐼�𝑧𝑧𝑖𝑖=𝑧𝑧𝑖𝑖�<𝑖𝑖𝑖𝑖>                          (13) 

Among them, |< 𝑖𝑖𝑖𝑖 >| represents all points j in the i neighborhood, and 𝛾𝛾 is a fixed parameter that 
controls the smoothness intensity. 

2.3.3 Enhanced spatial clustering model 

Due to the roughness of the unenhanced model, it is enhanced to improve resolution by dividing the 
original point into several sub points. In the iteration, the proposed values are generated as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖∗
′ = 𝑦𝑦𝑖𝑖𝑖𝑖∗ + ε𝑖𝑖𝑖𝑖                                (14) 

ε𝑖𝑖𝑖𝑖  ~ 𝑁𝑁(0,σ2𝐼𝐼𝑑𝑑) 

Among them, 𝜎𝜎2 represents a fixed parameter and has ∑ ε𝑖𝑖𝑖𝑖𝑖𝑖 = 0. Thus, the potential expression 
level y fluctuates within a relatively fixed range. 

Finally, linear or nonlinear regression can be used to map it to the logarithmically normalized gene 
expression space of the original data. 

Compared with the first two methods, BayesSpace incorporates spatial coordinate information into 
the Markov random field, making the model cover more data variable information and consider more 
about the spatial distribution of cells. Therefore, compared to traditional methods that only consider gene 
expression levels, the BayesSpace method can better utilize the spatial information, comprehensively use 
multiple data sources, and comprehensively grasp cell characteristics and functions, thereby improving 
the clustering results of tissue cells. However, there are still some possible issues with this method, such 
as it requires high preprocessing of transcriptome data, and this method also has high model complexity. 

3. Results 

The dataset used in this study is sequencing data of melanoma, which includes the horizontal and 
vertical coordinates of spots and gene expression levels, and is processed into a gene expression matrix. 
By using this data, we can explore the cell types in specific pathological tissues and identify gene types 
with high expression in tissue cells, which can be helpful for studying new gene therapy methods and 
finding therapeutic targets. 

3.1 Data preprocessing 

Due to significant differences in gene expression levels, using data from different dimensions for 
clustering and downstream analysis can easily make it difficult to capture cellular information with lower 
gene expression levels. Therefore, it is necessary to first perform data preprocessing and logarithmically 
standardize the data for ease of the following analyses. 

For high-dimensional datasets, appropriate dimensionality reduction is usually required to simplify 
calculations. The most commonly used method is PCA. In this article, PCA is chosen to reduce the 
dimensionality of the data. Due to the significantly different expression levels of highly variable genes in 
different cells, different cell characteristics can be significantly distinguished. The first 7 principal 
components and the first 2000 highly variable genes are selected to significantly reduce the original data 
dimension, reduce computational and storage complexity, and remove redundant information to screen for 
features that can effectively distinguish cell differences, which is conducive to further analysis in the future.  
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Figure 1: Negative log likelihood under different number of clusters 

To determine the optimal number of clusters, the negative logarithmic likelihood function was 
calculated for different numbers of clusters. As shown in Figure 1, the horizontal axis represents the 
number of clusters, and the vertical axis represents the nearest log likelihood. Usually, based on the image, 
the elbow method is used to select the abscissa value of the point where the curve descent amplitude 
changes from steep to flat as the optimal number of clusters. In this study, the corresponding number of 
clusters is 3 to 6. 

 

 
Figure 2: Cluster effect diagram under different number of clusters 

To further determine the optimal number of clusters, each scenario is clustered separately, and by 
observing the clustering effect graph, the final optimal number of clusters is selected as 4 categories. When 
the number of clusters is 6, as shown in the bottom right corner of Figure 2, it can be seen that the 
distribution of cells in category 5 (blue) is relatively scattered and adjacent to category 6 (pink purple). 
Therefore, it is speculated that category 5 (blue) and category 6 (pink purple) are of the same cell type, 
resulting in an excessive number of clusters in category 6. When the number of clusters is 5, as shown in 
the bottom left of Figure 2, it is also found that the distribution of cells in category 4 (blue) is very scattered, 
so it is considered redundant to cluster into 5 categories. Comparing the three clusters, as shown in the 
upper left of Figure 2 and the four clusters, as shown in the upper right of Figure 2, it is found that the 
clustering effect is good. However, upon closer observation, it can be observed that Category 2 (green) in 
Cluster 3 is almost identical to Category 1 (pink) and Category 3 (blue-green) in Cluster 4, and Category 
1 (pink) surrounds Category 3 (blue-green). Based on biological knowledge, it is speculated that there may 
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be different cell types, Therefore, it is more reasonable to have 4 clusters. 

3.2 Cluster analysis 

Divide each point into multiple sub points, and use k-means method, GMM method, and BayesSpace 
method for clustering after enhancement. The results are shown in Figure 3, which are k-means method, 
GMM method, and BayesSpace method from left to right. After comparison, it was found that in the 
clustering results based on the k-means method, the distribution of the second category (green) is very 
unclear and scattered. From the analysis of location information, the possibility of belonging to the same 
cell type is relatively small, so using the k-means method for clustering is not accurate; In the clustering 
results based on GMM method and spatial clustering method, the number of isolated samples in the second 
category (green) of the former is more and more scattered, and there are more small areas that are not 
connected to the concentrated areas in the second category (green). Compared with BayesSpace method, 
the clustering results of GMM method are mixed with the first category (pink) and third category (blue-
green) areas, resulting in poor classification performance. Therefore, using the BayesSpace method for 
clustering results in higher accuracy and better performance. 

 
Figure 3: Cluster effect diagram with 4 clusters under different enhanced clustering methods 

3.3 Marker gene staining 

Based on biological knowledge, identify marker genes in the cluster 1-4 and label them[6]. Among 
them, PMEL is highly expressed in melanoma, CD2 is highly expressed in T cells, CD19 is highly 
expressed in B cells, and COL1A1 is highly expressed in fibroblasts. Visualize the four marker genes as 
shown in figure 4, where darker colors indicate higher expression levels of these genes, while lighter colors 
indicate lower expression levels of these genes. 

 
Figure 4: Expression levels of different marker genes under the BayesSpace method 

From Figure 4, it can be seen that through gene expression related data, the expression information of 
different genes in different cells can be clearly visualized. Based on this feature, different cells can be 
spatially clustered to identify highly expressed genes in different categories of cells, thus accurately 
distinguishing cell types at different positions. 

Compare the gene expression staining map enhanced by sub points (the first row in the figure) with 
the gene expression staining map without enhancement (the second row in the figure), as shown in Figure 
5. 
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Figure 5: The expression levels of marker genes before and after enhancement 

From Figure 5, it can be seen that the color areas of the unenhanced stained image are relatively chaotic, 
with no obvious dark areas. About two-thirds of the regions in the PMEL gene staining image are dyed 
dark; In the CD2 and CD19 gene staining images, the distribution of darker color blocks is disorderly and 
scattered, without significant features; More than half of the regions in the COL1A1 gene staining image 
are dyed dark. Therefore, the data augmentation method of dividing one site into multiple sub points can 
accurately identify highly expressed genes, thereby effectively improving clustering performance. 

By comparing k-means, GMM, and BayesSpace methods, it can be found that the BayesSpace method 
performs better when considering cellular spatial coordinate information. In contrast, traditional methods 
such as k-means and GMM, although performing well in some cases, cannot fully consider the spatial 
distribution characteristics of cells, resulting in a lack of practicality and accuracy in clustering results. 
The BayesSpace method, combined with spatial location information and gene expression data, can better 
determine cell types, especially in identifying highly variable genes. This accurate classification result 
provides convenience for further research, helps to explore the characteristics of cell types more deeply, 
and promotes the development of related fields. 

4. Conclusions 

This article is based on the spatial transcriptome data of melanoma using BayesSpace method and 
retrograde clustering analysis. Firstly, perform data preprocessing to make the data a modelable gene 
expression matrix. Then, the PCA method is used to reduce the dimensionality of the data, and the optimal 
number of clusters is selected through the logarithmic likelihood function. Next, three clustering methods 
are used: k-means method, GMM method, and BayesSpace method, respectively, to cluster cells. Based 
on the enhanced classification images, the best clustering method is BayesSpace, and the marker genes 
will be stained to obtain the clustering results. This method has higher clustering accuracy, thereby more 
accurately identifying cell types. 

This study achieved high clustering accuracy by using multiple clustering methods to partition spatial 
transcriptome cell clusters. By comparing with other methods, this article proves the superiority of the 
BayesSpace method at the method level. In the field of biomedicine, the analysis results of this article 
annotate the cell types of different classification clusters in downstream analysis. Further research can be 
conducted on this basis to explore the characteristic cells and marker genes that have diagnostic 
significance for melanoma, and to promote the search for therapeutic targets for melanoma. 
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