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Abstract: With the continuous improvement of sensor technology, machine learning and data processing 
capabilities, underwater navigation gradually turns to the data-driven model. In this paper, we make full 
use of the data in the appendix to make a reasonable judgment on the classification and prediction of 
underwater adaptive areas, and evaluate the performance. K-means clustering method is used to cluster 
the characteristics of gravity anomalies in different regions. When the number of clustering centers is 
set from 2 to 11:00, the clustering results show that when the number of clusters is 2, 3, 5, 7, 8, 9, all 100 
iterations converge, and the clustering effect is good. When the number of clustering is 2, 3 and 5, the 
sum of the best distance is larger, and the distribution of contour coefficient has negative expansion; 
when the number of clustering is 7 and 8, the distribution of contour coefficient has negative expansion; 
when the number of clustering is 9, the contour coefficient is larger, the distribution is uniform on the 
front, the part of the contour coefficient less than 0 is very small, the convergence in the iterative process, 
the optimal distance and the sum of the optimal distance is relatively small: 63711.2. Therefore, when 
the number of clusters is 9, the fitting effect of each region is the best. Mark subclass 1 as area 1, mark 
subclass 2 as area 2, and so on.  
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1. Introduction 

Underwater navigation is a key technology, which is widely used in the fields of ocean engineering, 
underwater archaeology, Marine resource exploration and Marine scientific research. In the past few 
decades, with the continuous improvement of sensor technology, machine learning and data processing 
capabilities, underwater navigation has gradually shifted to a data-driven model. This model provides 
new possibilities for adaptive area classification and prediction in underwater navigation by utilizing 
large-scale underwater data acquired by sensors, combined with advanced algorithms and models[1-3]. 

Traditional underwater navigation technologies, which usually rely on sensors such as prior maps, 
inertial navigation and sonar, have encountered some challenges in the underwater environment, such as 
inadequate adaptability to changes in the Marine environment, limited positioning accuracy and the need 
for real-time feedback. However, the data-driven approach, based on data acquired from a variety of 
sensors, utilizes machine learning, deep learning and data mining techniques to better address these 
challenges[4]. 

Adaptive area classification and prediction in underwater navigation is an important task[5-7]. 
Adaptation zones usually refer to specific areas in the underwater environment, which may include 
shallow seas, deep seas, coral reefs, rocky terrain, etc. Classifying and predicting these zones can help 
improve the adaptability and efficiency of underwater vehicles, submersibles, or underwater equipment 
in different environments. In addition, accurate classification and prediction of the adaptive areas also 
provide important support for Marine resource exploration, ecological protection and Marine scientific 
research. 

Data-driven adaptation area classification and prediction rely on the collection, collation and analysis 
of large-scale underwater data. This includes data from sonar, lidar, cameras and other sensors, covering 
underwater terrain, water quality, biological information and more. From this data, machine learning 
models and deep neural networks can be used to identify, classify and predict different areas of adaptation. 
At the same time, the data-driven approach can be modified and improved with real-time feedback, thus 
improving the accuracy and reliability of the classification and prediction of the fit zones. 

The research on the classification and prediction of underwater navigation adaptive area based on 
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data drive provides a more accurate and efficient tool for the successful execution of underwater missions. 
However, there are still some challenges in this field, such as data quality, algorithm robustness and 
model generalization ability. Therefore, future research needs to continuously optimize algorithms, 
improve data quality, and continuously validate and refine models to better achieve adaptive area 
classification and prediction in underwater navigation. 

Based on the background analysis, this paper intends to solve the following problems:  

According to this, a set of gravity anomaly reference data A with a resolution of 1 / 1 (the distance 
between adjacent points is 1') is given.  

Refine the reference map as much as possible, divide the region reasonably, and complete the 
adaptation and calibration of each region. 

2. Research Method 

According to the background of the subject, due to the different distribution of gravity anomaly 
characteristics in different regions, on the basis of gravity anomaly data, the K-means clustering method 
is used to cluster the gravity anomaly characteristics in different regions, and the similar gravity data are 
classified into one class. The area where the gravity data is located is classified into one category, and 
the label of the region is set. First of all, the number of multi-clusters is set, and the distribution of the 
contour coefficients of each cluster center, the sum of the best distance and whether it converges in the 
iterative process are calculated. Then compare the three, select the optimal cluster number of the 
screening target, which is the distribution of the contour coefficient is more uniform, the contour 
coefficient is greater than 0.8 and less than the negative value, the sum of the best distance and iterative 
convergence, and the optimal cluster number has the highest adaptability. Finally, mark subclass 1 as 
area 1, mark subclass 2 as area 2, label 2, and so on.  

3. The establishment and solution of the model 

According to the background of the topic, due to the different distribution of gravity anomaly features 
in different regions, based on the gravity anomaly data, K-means clustering method is used to cluster 
gravity anomaly features in different regions, so as to classify relatively similar gravity data into one 
category, divide the region where such gravity data is located into one category, and set the label of this 
region. 

3.1 K-means clustering 

This section uses K-means clustering gravity anomaly data for subclass classification. There are many 
methods for cluster analysis, and the commonly used measurement methods are as follows: using 
distance to measure the degree of similarity between samples. The smaller the distance between two 
samples, the higher the similarity between them. The greater the distance, the smaller the similarity. 

 
Figure 1: K-means clustering steps 
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K-means clustering is a simple iterative clustering algorithm, and its calculation process is shown in 
Figure 1. Then, Euclidean distance is selected as the method to measure the similarity, and the contour 
coefficient method is used to determine the rationality of distance measurement. 

Euclidean distance is defined as follows: Suppose there are two sample sums whose feature vectors 
are represented by and, then the distance of sample sums is:𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, . . 𝑥𝑥𝑖𝑖𝑖𝑖, )(𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, . . 𝑥𝑥𝑗𝑗𝑖𝑖, )𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 

𝐷𝐷𝑖𝑖𝑗𝑗 = [∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖)2𝑖𝑖
𝑖𝑖=1 ]1/2                                                      (1) 

The absolute distance is defined as follows: Suppose there are two sample sums, whose eigenvectors 
are represented by and respectively, then the distance of the sample sum 
is:𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, . . 𝑥𝑥𝑖𝑖𝑖𝑖, )(𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, . . 𝑥𝑥𝑗𝑗𝑖𝑖, )𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 

𝐷𝐷𝑖𝑖𝑗𝑗 = ∑ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑗𝑗𝑖𝑖�𝑖𝑖
𝑖𝑖=1                                                              (2) 

As can be seen from Figure 1, the selection of cluster center, the measurement method of distance 
between data object and cluster center will affect clustering 

The accuracy of the result. Because the classification sample is 14883, the number of classification 
is not easy to be too much, so the number of cluster centers is selected as 8, 9 and 10, and the Euclidean 
distance is selected for cluster analysis calculation. The calculation results are compared with the contour 
coefficient method to finally determine the number of cluster centers. 

The contour coefficient is defined by the following formula, which represents the average distance 
between sample 𝑎𝑎(𝑖𝑖)i and other samples of the same cluster, and represents the average distance between 
sample 𝑏𝑏(𝑖𝑖)i and all samples of other clusters. When the calculated result is close to 1, it indicates that 
the classification 𝑆𝑆(𝑖𝑖)of sample i tends to be reasonable; 𝑆𝑆(𝑖𝑖)Close to -1, it means that the classification 
of sample i tends to be unreasonable, and it should be divided into other clusters. If it is close to 0, it 
means that sample i is on the boundary of two clusters.𝑆𝑆(𝑖𝑖) 

𝑆𝑆(𝑖𝑖) = 𝑏𝑏(𝑖𝑖)−𝑎𝑎(𝑖𝑖)
max�𝑎𝑎(𝑖𝑖),𝑏𝑏(𝑖𝑖)�

=

⎩
⎪
⎨

⎪
⎧1 − 𝑎𝑎(𝑖𝑖)

𝑏𝑏(𝑖𝑖)
           𝑎𝑎(𝑖𝑖) <  𝑏𝑏(𝑖𝑖) 

0                       𝑎𝑎(𝑖𝑖) =  𝑏𝑏(𝑖𝑖)
𝑏𝑏(𝑖𝑖)
𝑎𝑎(𝑖𝑖)

− 1            𝑎𝑎(𝑖𝑖) >  𝑏𝑏(𝑖𝑖)
                                           (3) 

Using 14883 sets of gravity anomaly data for clustering, FIG. 2 shows the distribution of contour 
coefficients when the number of selected cluster centers ranges from 2 to 11. It can be seen from the 
contour diagram that in 10 clustering cases, most points in each cluster have large contour values (greater 
than 0.8), indicating that these points can be well distinguished from neighboring clusters. However, 
there are also some points in each cluster that have lower contour values, indicating that they are close 
to points in other clusters. 

 
(a) The number of categories is 2         (b) the number of categories is 3 

 
(c) The number of categories is 4         (d) The number of categories is 5 
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(e) The number of categories is 6          (f) The number of categories is 7 

 
(g) The number of categories is 8         (h) The number of categories is 9 

 
(i) The number of categories is 10        (j) The number of categories is 11 

Figure 2: Distribution of contour coefficients with the number of cluster centers being 2-11 

Set the number of iterations to 100, and at each iteration, the K-means algorithm redistributes points 
between clusters to reduce the sum of the distances from the points to the center of mass, and then 
recalculates the center of mass assigned by the new cluster. The sum of distances and the number of 
reassignments decrease with each iteration until the algorithm reaches a minimum value. The algorithm 
used in K-means consists of two stages. In all three of these clustering cases, the algorithm converges, 
and the second stage of the algorithm does not undergo any redistribution, indicating that the first stage 
reaches its minimum after a few iterations. 

By default, K-means begins the clustering process with a randomly selected set of initial centroid 
locations. The K-means algorithm converges to the solution as a local minimum; That is, K-means can 
partition the data such that moving any point to another cluster increases the sum of distances. However, 
as with many other types of numerical minimization problems, the solution reached by K-means 
sometimes depends on the starting point. Therefore, there may be other solutions (local minimums) for 
this data that have a smaller sum of distances. 

3.2 Region Fit calibration 

When the number of clustering centers is 2-11, the iteration results are shown in Table 1. It can be 
seen from the table that when the number of cluster centers is 2, 3, 5, 7, 8, 9, all 100 iterations converge, 
and the clustering effect is good; Combined with Figure 2 and the sum of the best distance, when the 
number of clusters is 2, 3 and 5, the sum of the best distance is larger and the distribution of contour 
coefficients has a negative extension; When the number of clusters is 7 and 8, the profile coefficient 
distribution has negative extension; When the number of clusters is 9, the contour coefficient is large and 
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evenly distributed on the positive side, the part of the contour coefficient less than 0 is very small, and it 
converges during iteration, and the sum of the best distance is relatively small. Therefore, when the 
number of clusters is 9, the fit of each region is the highest. Figure. 3 shows the classification effect when 
the Euclidean distance is measured and the number of cluster centers is 9. As can be seen from the two-
dimensional figure, the classification of each region is obvious, and it is classified layer by layer along 
with the altitude. 

Table 1: Results of clustering iteration 

Number of clusters Sum of best distances Convergence or not during iteration 
2 205735 is 
3 149831 is 
4 122634 no 
5 102476 is 
6 87761.5 no 
7 76790.3 is 
8 69800.4 is 
9 63711.2 is 

10 58766.9 no 
11 54869.2 no 

 
(a) Three-dimensional effect 

 
(b) Two-dimensional effect 

Figure 3: Classification effect 

According to the above analysis, the cluster labels of each group of data are obtained. From the results, 
it can be seen that when a total of 9 regions are divided, the region division has the best adaptability. 
Among them, subclass 1 is labeled as region 1 and labeled as 1; Label subclass 2 as area 2, label 2, and 
so on. The zone label results are saved, where some of the results are shown in Table 2. 
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Table 2: Zone label results 

Data Sets Longitude Latitude Gravitational outliers Zone Tags 
1 115.0083 11.0068 59.3 6 
2 115.025 11.0068 58.1 6 
3 115.0417 11.0068 52.5 6 
4 115.0583 11.0068 45.5 1 
5 115.075 11.0068 38.4 1 
6 115.0917 11.0068 31.3 3 
7 115.1083 11.0068 24.3 3 
8 115.125 11.0068 18.2 7 
9 115.1417 11.0068 13.4 2 

10 115.1583 11.0068 10.5 2 
11 115.175 11.0068 9.2 2 
12 115.1917 11.0068 9.2 2 
13 115.2083 11.0068 10.5 2 
14 115.225 11.0068 13 2 
15 115.2417 11.0068 16.3 7 
16 115.2583 11.0068 19.5 7 
17 115.275 11.0068 22 7 
18 115.2917 11.0068 22.7 7 
19 115.3083 11.0068 20.8 7 
20 115.325 11.0068 16.6 7 

4. Conclusion 

In this paper, the underwater adaptive regions are classified and predicted by data-driven method, and 
the gravity anomalies in different regions are clustered by K-means clustering method. The experimental 
results show that when the number of clusters is 9, the fitting effect of each region is the best. The method 
proposed in this paper has a good application prospect in the field of underwater navigation and can 
provide strong support for adaptive region classification and prediction in practical application. Future 
research can further explore other clustering methods and optimization algorithms to improve the 
accuracy and practicability of underwater navigation.  
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