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Abstract: In recent years, the rapid advancement of single-cell RNA sequencing (scRNA-seq) technology 
has provided a powerful tool for delving into the diversity of cellular populations, offering researchers 
a unique perspective to explore intracellular heterogeneity. This technology enables us to gain profound 
insights into the gene expression patterns of individual cells, unveiling latent heterogeneity within cell 
populations. Accurately predicting single-cell types is a crucial step in understanding the dynamics and 
functional impacts of cells. This paper aims to introduce the application of hypergeometric testing in 
gene set enrichment as a foundational tool for predicting single-cell types. In comparison to traditional 
gene expression analysis methods, scRNA-seq captures individual differences in each cell, presenting 
unprecedented opportunities for understanding development, diseases, and tissue functionality. 
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1. Introduction 

The introduction of single-cell RNA sequencing (scRNA-seq) technology has empowered researchers 
with a potent and precise tool, allowing for a more profound exploration of cellular diversity [1-3]. By 
accurately identifying and classifying single-cell types, we can delve into the intricacies of biological 
systems. The continual advancements in this technology have propelled us toward a deeper 
understanding of intracellular heterogeneity [4-6]. Accurate prediction of single-cell types serves as the 
foundation for uncovering latent information within scRNA-seq data. Through precise predictions of 
single-cell types, we can comprehensively identify and understand the existence of various cell subtypes 
within cell populations, offering indispensable insights for the study of cellular function, developmental 
processes, and disease progression [7-12]. 

In this paper, we extensively delve into the application of hypergeometric testing as a robust statistical 
tool [9, 13, 14]. By evaluating the enrichment of marker gene sets for cell types in the reference dataset and 
their correlation with single-cell clusters in the test dataset, we establish a reliable foundation for 
predicting single-cell types. Consequently, accurate predictions of single-cell types hold significant 
implications for unraveling mysteries at the cellular level. Through sustained efforts in this field, we aim 
to achieve a more comprehensive and in-depth understanding of the intricate interactions within and 
beyond cells, propelling continuous advancements in cell biology and medicine [15-18]. This endeavor not 
only contributes to a holistic comprehension of biological systems but also provides a solid scientific 
basis for the development of disease treatments and personalized medicine [19-21]. 

2. Materials and methods 

2.1. Data Collection and Preprocessing 

During the data collection and preprocessing phase, we extensively utilized the Gene Expression 
Omnibus (GEO) database [22] and Seurat objects, containing a wealth of single-cell transcriptomic data 
encompassing crucial information such as cell types and gene expression. To ensure a high degree of 
correlation and biological relevance within gene sets, we meticulously curated gene sets for each cell 
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type [23]. Through extensive iterative testing, the dataset was partitioned into reference and test datasets 
at a specific ratio, guided by known biological correlations [24]. This rigorous process was implemented 
to ensure that the gene sets employed faithfully reflect the distinctive features of each cell type [25, 26]. 

2.2. Hypergeometric Distribution Test 

To gain in-depth insights into the gene enrichment patterns of each cell type, we opted for the 
hypergeometric test as our evaluation tool. In this test, where 𝑁𝑁 represents the total number of genes 
and 𝑀𝑀 represents the number of marker genes for a specific cell type, the probability (𝑃𝑃) of observing 
𝑖𝑖 or more marker genes in a randomly selected set of 𝑛𝑛 genes is calculated using the formula: 
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The hypergeometric test evaluates the statistical significance of gene enrichment for a specific cell 
type, considering whether this enrichment observed in scRNA-seq data is statistically significant. During 
the testing, we comprehensively considered the proportion of genes associated with the cell type across 
the entire dataset, along with the total number of genes related to that cell type. This meticulously 
designed testing process ensures an accurate and comprehensive assessment of gene enrichment levels. 

2.3. Statistical Significance 

The significance results of the hypergeometric test are presented in the form of p-values, reflecting 
the probability of observing gene enrichment. Results with P < 0.05 are considered significant in the 
enrichment analysis, thereby further confirming the substantial likelihood of the presence of the 
identified cell type within the dataset. Through this analysis of statistical significance, we can reliably 
assess the significant enrichment of cell types, providing robust statistical support for subsequent cell 
type predictions. This rigorous methodology ensures a profound understanding of cell type features and 
establishes a credible data foundation for research endeavors. 

3. Results 

3.1. Cell Type Based Clustering in the Reference Dataset 

Through meticulous clustering analysis of the reference dataset annotated with cell type information, 
we ensured the accurate delineation of cell populations. Each cluster represents a specific cell type, and 
the annotation of cell types represented by each cluster is illustrated (Figures 1.A, B), constructing a clear 
and organized foundation of cell types. In this clustering process, our emphasis lies not only in the simple 
grouping of cells but also in ensuring that each group consistently and significantly represents a specific 
cell type in terms of gene expression patterns. By adopting this approach, we were able to capture 
potential cell subtypes and subtle changes in cell states, rendering the final clustering structure more 
biologically meaningful. 

 
A. Cell type distribution in Islet tissue. B. Cell type distribution in Brain tissue. 

Figure 1: Distribution of different cell types in reference datasets.  

3.2. Clustering of Test Dataset 

Subsequently, we performed clustering on the test dataset, leveraging the cell type foundation 
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previously established. By precisely assigning each cell in the test dataset to pre-clustered cell types, we 
were able to reaffirm the cell type populations established earlier in the test samples, ensuring the 
consistency and reproducibility of the entire analysis process (Figures 2. A, B). 

The purpose of this step is to validate the applicability of our established cell type classification 
system on a new test dataset and confirm its generalizability across different datasets. Through precise 
cell clustering, we can verify the robustness of the model, enabling a more credible application of 
previously obtained cell type information to new research instances. This ensures that our cell type 
classification results are widely applicable and reliable. 

 
A. Cellular distribution in islet tissue. B. Cellular distribution in brain tissue. 

Figure 2: Distribution of different annotated cell clusters in the test dataset.  

3.3. Identification of Marker Genes 

Following the confirmation of the basic distribution of cell types and the distribution of different 
annotated cell clusters, we employed gene expression analysis methods within the Seurat framework to 
identify marker genes for each cell type (Figure 3). This involved utilizing advanced techniques such as 
differential expression analysis to ensure that the identified marker genes accurately and representatively 
reflected the specific characteristics of each cell type. Through this crucial step, we gained a deeper 
insight into the uniqueness of each cell type at the gene expression level. 

By employing sophisticated techniques such as differential expression analysis, we were able to 
discern genes significantly expressed in specific cell types. These genes not only quantitatively reflected 
the characteristics of the cell types but also possessed representativeness, providing us with a more 
comprehensive understanding of the biological properties of cell types. This in-depth exploration of gene 
expression data enriches the information available for the accurate classification and understanding of 
cell types, laying a solid foundation for subsequent cell type predictions and biological interpretations. 

 
Figure 3: Expression levels of marker genes in different cell types. 
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3.4. Further Evaluation of the Enrichment Levels of Marker Genes in Cell Subpopulations using 
Hypergeometric Test 

To comprehensively assess the enrichment of marker genes in each cell subpopulation, we employed 
the hypergeometric test as a precise evaluation tool. Through a thorough analysis of the enrichment levels 
of marker genes in various cell subpopulations, we were able to accurately quantify the close association 
of these genes with specific cell types. This led to precise annotations of cell clusters in the annotated 
dataset (Figure 4). 

 
Figure 4: Distribution of raw cell types and hypergeometric test-predicted cell types in the annotated 

dataset of human liver tissue. 

The application of hypergeometric tests enabled precise quantification of enrichment patterns for 
annotated genes within cell subpopulations. This accurate quantification contributes robust data support 
for further analysis of cell types. The reliability and accuracy of this step not only strengthen our 
confidence in the correlation of cell types but also ensure that the resulting classification of cell types 
possesses clear biological significance. This systematic evaluation approach will lay a solid foundation 
for subsequent cell type predictions and biological investigations, allowing for a more comprehensive 
understanding of the biological information within single-cell transcriptomic data. 

4. Conclusions 

Our study applies rigorous data collection and processing, utilizes hypergeometric testing, and 
employs precise assessment of statistical significance to apply hypergeometric distribution testing for 
predicting cell types in scRNA-seq data. The results reveal statistically significant enrichments of 
multiple cell types (Table 1). 

Table 1: Predictive performance evaluation. 

Dataset Number of cell types Forecast accuracy p-value 
Islet 4 97.12% 1.81e-4 
Brain 9 94.60% 2.97e-3 
Liver 20 93.91% 1.67e-2 

Through the organic integration of the above steps, we have ensured a high-quality analysis of single-
cell transcriptomic data, constructing a precise and comprehensive analytical framework. The superiority 
of this integrated framework is manifested in its ability to ensure the accurate identification and 
classification of cell types in the test dataset, providing a solid foundation for in-depth exploration of the 
differences and biological significance between cell types. 

By employing a systematic approach, we have been able to establish a reliable classification of cell 
types, thereby ensuring the intrinsic consistency and reproducibility of our research. The rigor of this 
methodology contributes to uncovering hidden patterns and associations within cell populations, 
providing a robust scientific basis for cell type prediction and biological interpretation. Furthermore, it 
lays a reliable methodological foundation for future exploratory studies and investigations into the 
biological mechanisms associated with cell types. 
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