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Abstract: This study focuses on sustainability issues related to urban light pollution. Utilizing a 

comprehensive evaluation model, created by integrating ExtraTrees and CatBoost decision tree models 

along with the ARIMA Time Series model, the study establishes management strategies under varying 

light pollution levels. Initially, 363 cities were sampled to identify factors affecting light pollution 

through the analysis of Night Sky Brightness (NSB). Subsequently, four representative regions within 

Guangzhou were empirically evaluated to affirm the model's robustness and accuracy. Lastly, 

interventions involving the modification of GDP growth, urbanization, and forest cover indices were 

simulated to assess their impact on light pollution levels. The findings indicate that targeted interventions 

can effectively mitigate light pollution. 

Keywords: Light Pollution, ARIMA, Time Series, Intervention Strategies 

1. Introduction 

In the era of technological advancements, artificial lighting has become ubiquitous in human life, 

contributing not only to convenience but also to a less-discussed issue—light pollution. While initial 

studies focused on the impact of light pollution on wildlife, emerging research underscores its far-

reaching effects on human health and ecosystems. However, existing methods for measuring light 

pollution, such as satellite imagery or naked-eye observations, are limited in scope and accuracy. This 

study aims to address these gaps by simplifying influential factors to improve model accuracy, 

developing a comprehensive light pollution index and evaluation model with better generalizability, and 

applying this model to diverse settings—from nature reserves to metropolitan areas—to validate its 

efficacy. Additionally, the paper presents three practical strategies aiming to address the issue of light 

pollution while also considering economic benefits, environmental effects, and social requirements.  

2. Comprehensive Light Pollution Index and Level Classification 

This study employs data from 1419 cities in countries including the United States, China, Japan, and 

the United Kingdom to investigate the impact of both natural and non-natural factors on urban light 

pollution. Using 17 statistical indicators, such as GDP and elevation, culled from public reports and 

satellite imagery, the study narrows its focus to 363 cities in China. The choice of China as a case study 

allows for a more generalized light pollution evaluation metric, given its diverse economic conditions 

and levels of light pollution due to its large territorial extent and unequal resource distribution [1]. 

2.1 Indicator Correlation with Light Pollution Levels 

The study employs Night Sky Brightness (NSB) as an indirect measure of artificial light intensity, 

serving as a proxy for assessing light pollution levels. An initial analysis was conducted to explore the 

relationships between NSB and 17 selected indicators. Preliminary results indicate that NSB shows a 

significant positive correlation with 12 indicators, such as GDP, Urbanization Rate, and Light Intensity 

Per Capita. Conversely, indicators like Forest Cover and Altitude exhibited minor negative correlations 

with NSB. Specifically, NSB tends to increase with a rise in GDP and decrease with higher altitudes. 
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Among these, GDP exhibits the strongest influence on NSB variation in Figure 1. 

 

Figure 1: Relationship between NSB and Indicators 

2.2 Weighted Analysis of Light Pollution Indicators 

To comprehensively evaluate light pollution, this study applies the Lasso model for initial feature 

selection. The model effectively eliminates less influential variables, thereby mitigating the issue of 

multicollinearity among indicators. One notable finding is the exclusion of the 'Light Intensity Per Unit 

GDP' variable due to its high correlation with GDP, affirming the model's capability to home in on 

relevant features. 

Subsequently, ten key indicators were identified based on established scientific literature for the study 

of light pollution. Advanced machine learning algorithms, including CatBoost and ExtraTrees, were 

employed to quantify the significance of each chosen indicator, further refining the evaluation model in 

Figure 2. 

 

Figure 2: Two-level Indicators 

2.3 Optimal CLPI Formation via TOPSIS Method 

The Comprehensive Light Pollution Index (CLPI) is defined as a methodology to quantify the level 

of light pollution in each area through the following steps and formulas. 

First, the standardized matrix is constructed. A matrix Xij with n rows and m columns is constructed, 

and X in the matrix denotes the value of the j-th evaluation index of the i-th region. 

In the second step, the gap between the 10 level II indicators and the optimal and inferior vectors is 

calculated. 
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Where, 𝑤𝑗  is the feature importance of the jth indicator. 

In the third step, the indicator data of the selected cities are substituted to derive the CLPI for the 

region. 

𝐶𝐿𝑃𝐼 =
𝐷−

𝑖

(𝐷+
𝑖+𝐷−

𝑖)
                                (2) 

The CLPI was calculated for 363 cities in China, and the size of each local highlight was plotted on 

a map of China (partly) at the CLPI scale. Figure 3 shows light pollution and its CLPI score for only five 

regions. Among them, Taiwan, Beijing, Guangzhou, and Shanghai received the top four CLPI scores, 

while Shennongjia Forestry District received the lowest CLPI score. 

 

Figure 3: CLPI Scores for Selected Locations in China 

2.4 K-Means-Based Light Pollution Level Categorization 

To minimize the intra-classification gap and maximize the inter-class gap, the similarity between 

different influencing light pollution indicators will be explored to classify the sample set. This 

classification aims to minimize the intra-classification gap and maximize the inter-class gap. An analysis 

using unsupervised learning model clustering algorithms is considered for setting out different categories 

of cores based on the CLPI of different cities. Subsequently, the cities will be clustered into different 

categories based on the similar metric between CLPI and cores. This clustering will be used to classify 

the light pollution level [2]. 

By setting the criterion function for clustering, the k-value is dynamically changed in the process of 

clustering until the criterion function is the smallest, then the clustering is considered complete. 

The sum of the squared distances from each sample point in the clustering set to the center of that 

cluster, and for the j-th cluster set, the criterion function is defined as: 

2

1

jN

j i j

i

J X Z


  ,
i jX S                           (3) 

Where Sj denotes the j-th cluster set. The center of the jth light pollution center is Zj; Nj is the number 

of cities contained in the jth light pollution level Sj. 

For all k model classes, there are: 

𝐽 = ∑ ∑ ‖𝑋𝑖 − 𝑍𝑗‖
𝑁𝑗

𝑖=1
𝑘
𝑗=1

2

, 𝑋𝑖 ∈ 𝑆𝑗                       (4) 

The jth level of light pollution center Zj   should be chosen so that the criterion function J is extremely 
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small. It also means that the value of Jj is extremely small. This must be met and should 0
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The solution is 
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  . The cluster center of class 𝑆𝑗  is the mean center of the light 

pollution level at level j. 

 

Figure 4: Elbow Method Diagram 

As shown in Figure 4, when the number of clusters is 5, the slope tends to be smooth, and the intercept 

k=0.13, Therefore, the light pollution is divided into five categories, and the name of each category of 

light pollution level (LPI) and the determination interval of CLPI is shown in Table 1. 

Table 1: Light Pollution Degree Division Interval 

LPI 
Slight Pollution 

(SP) 

Low 

Pollution 

(LP) 

Moderate 

Pollution 

(MP) 

Heavy 

Pollution 

(HP) 

Severe 

Pollution 

(SeP) 

CLPI 0.056~0.104 0.104~0.175 0.175~0.345 0.345~0.641 0.641~∞ 

Representative 

Cities 

Aba Tibetan and 

Qiang 

Autonomous 

Prefecture 

Zhongshan Nanjing Beijing Taiwan 

3. Analysis and Categorization of Light Pollution in Diverse Urban Environments 

3.1 Selection of Four Types of Areas and Basic Introduction 

Among the several regions with high CLPI scores, considering that Guangzhou covers a large area, 

the LPI of different regions is highly differentiated. As shown in Figure 5, Tianhe District was selected 

as the urban representative, Conghua District as the suburban repre-sentative, Haizhu National Wetland 

Park as the protected land location representative, and Xiancun Town in Zengcheng District as the rural 

community representative [3]. 
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Figure 5: Four types of areas and initial perceived luminance levels 

The study systematically analyzes light pollution levels in various regions of Guangzhou City, China, 

namely Tianhe District, Conghua District, Haizhu National Wetland Park, and Xiancun Town. Tianhe 

District is identified as a highly urbanized area with significant commercial activity, thus expected to 

exhibit elevated levels of light pollution. Conversely, Xiancun Town, due to its low population density 

and limited commercialization, is expected to maintain low light pollution levels. Conghua District and 

Haizhu National Wetland Park fall in between, with the former influenced by nighttime entertainment 

and tourism, and the latter being a protected area but still subject to potential light pollution due to tourism. 

The importance of various indicators is evaluated using CatBoost and ExtraTrees models, providing a 

scientific basis for future light pollution management. 

3.2 CLPI and LPI and Rationalization Analysis for Four Types of Areas 

Based on the comprehensive light pollution evaluation model developed in this paper, the empirical 

findings across distinct regions in Guangzhou align well with model predictions. Specifically, Tianhe 

District's elevated levels of light pollution can be attributed to its low forest cover and high performance 

on other key indicators. Conghua District, although less developed, shows significant levels of light 

pollution due to its closeness to Tianhe District and reliance on hot spring tourism. Despite being a 

protected natural park, Haizhu National Wetland Park manifests moderate levels of light pollution, a 

consequence of its commercial orientation. Lastly, the low light pollution levels in Xiancun Town are 

explained by its minimal urbanization rate and the dominance of residential and street lighting as the 

primary light sources, corroborating the model's assessments in Figure 6. 

 

Figure 6: Comparison of Data for Six Indicators at Four Locations (Normalized) 

4. Effectiveness of Intervention Strategies and Impact on Risk Levels 

4.1 Building an ARIMA Time Series Model 

In this study, the effectiveness of a proposed intervention strategy was validated by its application to 

two disparate locations, Guangzhou, and Harbin, chosen for their contrasting geographical and economic 

characteristics. Utilizing composite indicators of light pollution gathered over the past 20 years, future 

projections were generated for both cities over a seven-year period, both with and without intervention. 

The intervention strategy primarily targeted modifiable variables like GDP, Urbanization Rate, and 
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Forest Cover, aligning with the study's earlier analytical framework to assess their impact on light 

pollution risk levels. 

An ARIMA Time Series Model explores a particular time series. After a long-term change process, 

the statistical regularities that exist are studied and predicted. Following this, the model is built to extend 

the timeline and extrapolate the resulting statistical patterns to predict possible future developments and 

trends over a long timeline [4]. If you want to forecast the macroeconomic environment of China in the 

next five years, you need to build a time series model, and the steps to build it are as follows: 

(1) Generate Sample Sets 

Let the time series be 𝑋(𝑖), 𝑖 = 1,2,3, ⋯ , 𝑛, X(t) constitutes the input vector and X(t+1) constitutes 

the output vector. The data were also subjected to standard normalization. 

𝑋 =
𝑋−𝜇

𝛿
                                     (6) 

where μ is the meaning of the sample data and δ is the standard deviation of the sample data. 

(2) Set Structure Parameters 

The training set can determine the structural parameters. After the structural parameters are 

determined, the nodes of the hidden layer are set: 

𝐻 = 𝑠𝑞𝑟𝑡(𝑚 + 𝑛) + 𝑎                              (7) 

where H is the number of implicit layer nodes. m is the number of layer nodes input. n is the number 

of output layer nodes. a is the regulation constant. 

(3) Model Evaluation Metrics 

Let the predicted value be 𝑌
^

(𝑖),The true value is Y(i),𝑖 = 1,2,3, . . . , 𝑛,then: 

𝑀𝐴𝐸 =
1

𝑛
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^

𝑖 − 𝑌𝑖 ∣                             (8) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑  𝑛

𝑖=1 ∣
𝑌
^

𝑖−𝑌𝑖

𝑌𝑖
∣                            (9) 
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^
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4.1 ARIMA Time Series Model Predicts Future Unintervened Indicators 

Firstly, it is necessary to perform an ADF test on the time series with indicators of GDP, Forest Cover, 

and Urbanization Rate. Only when these two-time series pass the smoothness test can the model continue 

to be applied to the calculations. 

The results show that the ADF test results of the time series for both days show significance (P<0.05), 

Then the time series with the three as indicators is proved to be a smooth time series. 

Considering the intervention strategies implemented above, there will be an impact on the growth 

rates of the three-level II indicators. Therefore, the GDP Growth Rate and Urbanization Growth Rate are 

subtracted from Figure.7, and the growth rate of Forest Cover is added. The data were simulated for a 

total of seven years from 2023 to 2030 [5]. The data of the three level II indicators before and after the 

intervention were obtained as shown in Figure.7. 

 

Figure 7: Comparison of Changes Indexes Before and After the Intervention 

Where the value of α is determined based on the unit of growth rate and a reasonable selection within 

a certain range 
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4.3 Comparison of Changes in Factors Before and After the Intervention 

The effects of the above intervention strategies on CLPI were explored using the control variables 

method. This analysis aimed to identify the most suitable interventions for the region by examining the 

effects of each strategy individually. 

 

Figure 8: Comparison of Impact Rates Before and After Intervention 

As shown in Figure 8, the intervention of increasing Forest Cover was more effective for Guangzhou. 

As shown in Figure 9, with Forest Cover’s interventions, the LPI level de-creases directly by one level 

in three of the next seven years; And for Harbin, interventions that use an increased share of green GDP. 

This helps the local area even more for the next four years within the next seven years and the LPI drops 

one level directly. 

 

Figure 9: Comparison of Light Pollution Levels Before and After Intervention 

5. Conclusions 

In conclusion, this study presents a robust and generalizable light pollution rating model by 

capitalizing on China's unique economic and geographical landscape. Methodological rigor is maintained 

using maximum likelihood estimation and the integration of multiple predictive models. Despite these 

strengths, the study acknowledges limitations in the lack of a unified night sky brightness evaluation 

framework and the selection of a limited set of indicators, potentially affecting the model's universality. 

For future research, the study aims to enrich the night sky brightness data set from 2020 to 2022 and 

investigate the potential correlation between light pollution levels and population mental health during 

pandemic lockdowns, thereby contributing to a more comprehensive understanding of light pollution's 

societal impacts. 
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