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Abstract: This paper explores the contributions of various kinds of fossil energy to provincial
disparities in per capita carbon emissions within China between 2007 and 2018, considering both
sources of and incremental changes in carbon emissions via Gini coefficient decomposition. We apply
a Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model and
discuss the effects of economic growth, energy intensity, industry production, urbanization rate, and
energy savings/emissions reduction expenditures on changes in provincial disparities of carbon
emissions. The findings indicate that China’s economic development, technological progress in energy
savings and emissions reductions, urbanization rate and the Chinese government’s related financial
investments, have so far significantly changed carbon emissions. As one measure of technological
progress, the increase of industry proportion will significantly increase carbon emissions only in
economically underdeveloped areas.
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1. Introduction

Under the threat of a warming global climate, implementing energy savings and emissions
reduction policies to accomplish concomitant economic and environmental development has become a
key challenge for countries worldwide.

On November 12th 2014, in Sino-US joint statement on climate change, China first officially
declared that it planned to ascend to the peak of carbon dioxide emissions around 2030 and would
endeavor to arrive at the peak even faster. By 2030, China would make the share of non-fossil energy
within the primary energy consumption, which reaches approximately 20%, and plan to continue to
work on this and to increase its intensity over time. However, it is proving quite difficult for China to
reduce its carbon dioxide emissions currently, as China remains at a critical stage of economic
transformation with a coal-centered energy structure, severe resource shortages, and a fragile ecological
environment. Meanwhile, even in provinces with comparable levels of social and economic
development, there can be notable differences in emissions between them ™; reducing CO, emissions
thus requires recognizing the origins of inter-province differences in carbon emissions, as well as the
factors that influence these differences. Only by understanding the main causes of these differences can
policymakers craft better targeted energy savings and emissions reduction policies.

In the 1970s, the Impact, Population, Affluence, and Technology (IPAT) Model developed from the
debates between Ehrlich and Holdren 2 and Commoner El. Commoner B! believed that technology was
the most important factor affecting the environment, while Ehrlich and Holdren 2 explained that the
environment was significantly impacted by population, wealth, and technology. As such, an improved
IPAT model, the Stochastic Impacts via Regression on Population, Affluence, and Technology
(STIRPAT) model, which allows discussion of various influencing elements and is universally used in
the relevant research [“71. The majority of readers have concluded that economic growth and increasing
population constitute two major factors influencing CO..

Most studies have concentrated on a specific country or region while neglecting differences in
geographic conditions, resource endowments, economic structures, and other characteristics between
regions. Therefore, the number of studies on regional disparities in carbon emissions has steadily
grown in recent years. He et al. ¥ used the emissions Gini coefficient to compare carbon emissions
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inequality across Chinese provinces from 2007-2017, and explained that persistent disparities in the
decoupling of development and emissions across regions are responsible for the increasing inequality
in the geographical distribution of carbon emissions. Wu and Chen [ utilized city-level data in China
from 2005-2020 to calculate a modest decline in the Gini coefficient of carbon emissions, a carbon
economy concentration index and a Kakwani index indicating an asymmetry between carbon emissions
and economic development, concluding that energy-intensive characteristics are responsible for a large
share of carbon inequality.

This paper will thus analyze provincial differences in carbon emissions using the Gini coefficient,
which will be decomposed in terms of both sources and incremental changes. In this way, we will be
able to identify the main sources of and factors influencing regional differences in carbon emissions in
China, thus providing crucial empirical information for policymakers. The existing studies that
decompose the Gini coefficient in terms of source and increment changes had only looked at carbon
emissions from coal and different sectors 1%,

The remainder of the paper is structured as follows. Section 2 introduces the analytical methods and
relevant data sources. Section 3 presents results, quantitatively analyzing the contributions of various
types of energy to provincial differences in carbon emissions via Gini coefficient decomposition and
applying the STIRPAT model to discuss the elements impacting carbon emissions. Section 4 concludes,
offering relevant policy suggestions.

2. Methods and Data
2.1 Measurement and Calculation of Carbon Emissions

When calculating carbon emissions, we use a widely applied method described by
Intergovernmental Panel on Climate Change (IPCC) in its 2006 IPCC Guidelines for National
Greenhouse Gas Inventoriest™. For the sake of minimizing possible errors in the division of primary
energy sources, we included all 17 energy types specified in China Energy Statistical Yearbook [,
Using such method and energy consumption in various provinces/cities (from the China Statistical
Yearbook ¥1), we will then be able to calculate regional carbon emissions.

2.2 Gini Coefficient Decomposition of Provincial Differences of Carbon Emissions

The combustion of fossil fuels produces CO,. Decomposing the Gini coefficient of carbon
emissions (“emissions Gini coefficient”) is conducive to analyzing the roles of these different fossil
energy sources in driving provincial disparities in carbon emissions. It is easiest to decompose the Gini
coefficient in line with sources:

n
G = > IG; oy

i=1
In equation (1), Gi is the pseudo-Gini coefficient calculated for energy type i. In such cases, we will
get different Gini coefficients for the ith energy source when calculated based on the Lorenz Curve and
equation (1). I; gives the ratio of total carbon emissions that are produced by the ith energy source. The
rate at which energy i contributes to the overall difference can thus be expressed as: 1;G; / G% . Using
this equation, the contribution of each energy type’s emissions Gini coefficient to overall regional

differences can be calculated from 2007 to 2018.

We will thus also decompose changes in the Gini coefficient as a way to explore in depth changes in
provincial inequality in carbon emissions, 2007-2018. There are two methods to approach this
decomposition. First, this paper decomposes the 2007-2018 changes in emissions Gini coefficients
between provinces in line with regional carbon emissions, regional emissions ranking, and population
share. It can be expressed as:

In this equation, AGy refers to changes in the Gini coefficient brought about by changes in carbon

emissions while the regional emissions ranking and population share are maintained at the level of the
base period; AGg reflects those resulting from changes in the regional emissions ranking; and AGp

refers to those caused by changes in various regions’ population shares, with emissions and regional
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emissions ranking kept at the base level.

The second method involves dynamically decomposing the overall Gini coefficient from different
carbon emissions sources. The equation is:

S S S
AG = G(l) - G(O) = ZGI(O)AII +Z Ii(O)AGi + ZAIIAGI (3)
i=1 i=1 i=1

In Equation (3), Al; = Ii(l) - |i(0) and AG; = Gi(l) —Gi(o) respectively show the proportion and
concentration (pseudo-Gini coefficient) changes in emissions from energy i spanning the base and end
periods. Three components account for the variation in the Gini coefficient: the structural effect caused
by the energy structure; the concentration effect due to changes in carbon concentrations of the energy
types; and the comprehensive effect due to changes in both.

The provincial carbon emissions data required for the Gini coefficient decomposition comes from
our calculations; year-end population data originates from China Statistical Yearbook. ]

2.3 Construction of the STIRPAT Model

We investigate the elements impacting carbon emissions via the STIRPAT model, using the standard
form:

Inl =a+blnP+cinA+dInT 4)

In this paper, | refers to per capita CO, emissions, P indicates population size, A indicates per capita
GDP, and T indicates energy intensity.

Since CO; is the most prevalent emitted greenhouse gas (GHG) and has a significant effect on the
environment, we use per capita CO2 emissions as a measure of impact and come to explore the impact
of various economic factors on them.

Urbanization is the principal force driving China’s economic growth and energy demand. Therefore,
we replace the population indicator in the model with the urbanization rate, to reflect changes in
energy consumption and carbon emissions brought about by population shifts.

Per capita GDP is used to reflect an economy’s state of development; different economic
development phases entail different energy consumption characteristics.

Energy intensity is often used to capture the economic efficiency of energy utilization , also known
as energy consumption per unit of GDP and is an important indicator of technological progress.
However, energy intensity fails to reveal the impact of industrial structure on carbon emissions.
Therefore, we include the economy’s industry proportion in the model as a secondary indicator for
energy intensity.

Though it will not be possible to curtail carbon emissions by merely depending on the market,
economic instruments can effectively help the government to play a guiding role. Research has shown
that levying taxes on carbon emissions and increasing financial expenditures can effectively reduce
emissions 14131 Therefore, we will include government expenditures on energy savings and
environment protection among the explanatory variables so as to explore its influence on regional
emissions differences.

Our STIRPAT model thus includes per capita GDP, energy intensity, industry proportion,
urbanization rate, and per capita spending on energy savings and emissions reductions (reflecting the
effects of economy, technology, population, and policy, respectively, on carbon emissions). Hence, the
logarithmic panel model can be represented as shown below:

Ince;, = po + o1 In gdpy; + p,(In gdp;)? + o5 Ineney + p, Inind;, + ps Inurby, + pg In T, + ¢ + &, (5)

In equation (5), cei: refers to CO2 emissions, and we decompose economic growth into two parts,
Ingdpic and (In gdpi)2, by considering the inverted U correlation between carbon emissions and
economic development; gdp refers to per capita regional GDP. enej, indi;, urbi, and fpi; represent energy
intensity, industry proportion, urbanization rate, and per capita expenditures on energy savings and

emissions reductions, respectively; ¢, is an individual effect, while &;; is a random disturbance.

As the Chinese government changed the statistical definition of its expenditures on energy savings
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and emissions reductions in 2007, we use 2007-2018 panel data for 30 provinces (excluding Tibet). In
the model, data on year-end population, regional GDP, energy consumption, urbanization rate, industry
portion, and fiscal expenditures on energy savings and environment protection come from 2008-2019
China Statistical Yearbook.

3. Results
3.1 Decomposition of Gini Coefficient for Provincial Carbon Emissions

3.1.1 Decomposition According to Emissions Sources

Table 1: Gini Coefficients and Contribution Rates of Various Fossil Energy Sources to Inequality in
Provincial Carbon Emissions

Coal Coke products Petroleum Natural Gas Energy
2007 0.2273 68.98 0.3162 18.21 0.1784 12.81 0.0453 0 0.2310
2008 0.2330 69.32 0.3281 18.89 0.1733 11.79 0.0394 0 0.2363
2009 0.2232 67.33 0.3385 20.49 0.1745 12.17 0.0293 0 0.2315
2010 0.2248 68.89 0.3461 21.29 0.1503 9.82 0.0212 0 0.2308
2011 0.2382 81.54 0.3604 24.06 0.1521 10.58 0.0444 0 0.2309
2012 0.2535 72.58 0.3454 19.83 0.1263 7.59 0.0676 0 0.2476
2013 0.2696 75.35 0.3364 19.33 0.0903 5.33 0.0936 0 0.2526
2014 0.2842 77.65 0.3195 18.4 0.0656 18.4 0.0964 0 0.2557
2015 0.2980 78.93 0.3153 17.26 0.0617 3.81 0.0884 0 0.2623
2016 0.3099 78.87 0.3194 17.3 0.0632 3.82 0.0612 0 0.2709
2017 0.3125 79.62 0.3266 16.93 0.0570 3.45 0.0877 0 0.2724
2018 0.3268 78.57 0.3917 19.14 0.0425 2.28 0.0847 0 0.2915

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks.
Note: As coke products result from secondary combustion, they also release CO, during combustion. Therefore, they are included in the
table.

As shown in Table 1, inequality of carbon emissions in Chinese provinces, as measured by the Gini
coefficient, increases from 0.2310 in 2007 to 0.2915 in 2018. The largest inter-regional difference is in
carbon emissions from coke products, for which the average Gini coefficient is 0.3370. Comparatively,
provincial disparities in carbon emissions from coal and total carbon emissions are similar, between
0.22 and 0.33, followed by petroleum, with an average Gini coefficient of 0.1113. Natural gas boasts
the smallest Gini coefficient, below 0.1.

In line with equation (1), we calculate the rate at which each energy source contributes to provincial
inequality in carbon emissions. Differences in carbon emissions from coal make the largest
contribution to overall carbon emissions inequality, responsible for more than 67% from 2007 to 2018,
with an annual average increase rate of 1.19%. Compared to other fossil energy sources over the same
period, coke products’ contribution rate increases from 18.21% to 19.14%, and that of petroleum
decreases from 12.81% to 2.28%, while natural gas contributes close to 0 to provincial differences in
carbon emissions.

To more precisely consider the CO, emissions differences between coal, coke products, and
petroleum, we use equation (1) to decompose the Gini emissions coefficient in terms of these different
sources. The results are shown in Tables 2-5.
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Table 2: 2007-2018 Provincial Emissions Gini Coefficients and Contribution Rates of Various Types of

Coal
Gini Coefficient Contribution Rate %
Raw Coal Washed Coal Other cleaned Briquette Raw Coal Washed Coal Other cleaned Briquette

coal coal
2007 0.2374 0.2713 0.4189 0.1420 95.46 1.87 2.95 0.28
2008 0.2425 0.2975 0.4338 0.0118 94.79 2.2 2.98 0.03
2009 0.2385 0.1656 0.3663 0.0131 95.94 1.48 255 0.03
2010 0.2427 0.0376 0.2952 0.0480 97.04 0.61 224 0.11
2011 0.2557 0.0512 0.2491 0.0828 97.4 0.58 1.85 0.17
2012 0.2697 0.0135 0.3666 0.1665 97.12 0.16 2.7 0.34
2013 0.2847 0.0801 0.2733 0.1528 97.05 0.94 1.72 0.29
2014 0.3026 0.0189 0.2662 0.1972 97.70 0.23 171 0.36
2015 0.3182 0.0167 0.2690 0.2374 97.85 0.17 1.55 0.43
2016 0.3264 — 0.2641 0.1723 97.49 — 218 0.33
2017 0.3311 — 0.3257 0.1107 97.47 — 2.46 0.17
2018 0.3369 — 0.4498 0.0789 97.53 — 247 0.12

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks.
Note: Owing to the absence of data on Washed Coal consumption in 2016-2018, there is no related carbon emission data.

As Table 2 shows, from 2007 to 2018, the carbon emissions inequalities arising from raw coal
generally grew, while the carbon emission inequality of washed coal decreased year by year. For other
washed coal and briquette, the Gini coefficient fluctuate significantly. In 2018, other cleaned coal
accounted for the greatest proportion of regional carbon emissions differences arising from coal, with a
Gini coefficient of 0.4498. This is followed by raw coal and briquette, with respective Gini coefficients
of 0.3369 and 0.0789. Raw coal plays a dominant role in regional emissions inequality: its contribution

rate to regional differences in coal-based carbon emissions remains over 94% for the entire period.

Table 3: 2007-2018 Provincial Emissions Gini Coefficients and Contribution Rates of Various Coke

Products
Gini Coefficient Contribution Rate %
Coke COG Other Other Coke Coke COG Other Other Coke
Gases Products Gases Products
2007 0.4037 0.5419 0.3864 0.5639 93.13 0.69 2.22 3.96
2008 0.4119 0.4913 0.3411 0.5877 93.35 0.63 1.92 4.09
2009 0.4146 0.4480 0.3697 0.5370 93.53 0.54 2.29 3.64
2010 0.4188 0.4216 0.1156 0.5273 95.62 0.57 0.04 3.77
2011 0.4362 0.4479 0.0937 0.525 95.76 0.58 0.04 3.62
2012 0.4281 0.4321 0.0782 0.4762 96.44 0.56 0.03 2.97
2013 0.4300 0.4431 0.0240 0.4427 95.86 0.59 0.01 3.55
2014 0.4210 0.4243 0.0462 0.4038 95.88 0.56 0.01 3.56
2015 0.4236 0.4205 0.0231 0.3979 95.78 0.55 0.01 3.66
2016 0.4287 0.4163 0.1033 0.4461 95.26 0.54 0.03 417
2017 0.4289 0.4039 0.1965 0.4637 95.05 0.53 0.05 4.37
2018 0.4682 0.4072 0.1232 0.5299 96.12 0.50 0.03 3.35

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical

Yearbooks.

The Gini emissions coefficients of coke, COG and other coke products are relatively high, generally
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above 0.4 (Table 3). Regional differences are thus relatively pronounced. The emissions Gini
coefficients of COG, other gases, and other coke products decrease by reaching 24.86%, 68.12%, and
6.03%, respectively. However, the emissions Gini coefficient for coke increases from 0.4037 to 0.4682.
The contribution rates show that coke itself contributes the most to cross-regional inequality in carbon
emissions from coke products, with a contribution rate in excess of 93% and growing by 3.21%
between 2007 and 2018.

Table 4: 2007-2018 Emissions Gini Coefficients for Various Petroleum Products

Crude Refinery Other

Gasoline Kerosene Diesel Fuel Oils LPG Petroleum

Oil bry Ges Products
2007 0.5408 0.2610 0.4917 0.2243 0.6211 0.4365 0.4665 0.4615
2008 0.4450 0.2672 0.5195 0.2159 0.605 0.3864 0.4866 0.4504
2009 0.5198 0.2831 0.5191 0.2122 0.5857 0.3977 0.4704 0.4458
2010 0.5576 0.2629 0.4952 0.2152 0.588 0.3718 0.4524 0.3156
2011 0.5707 0.2562 0.4701 0.1978 0.5557 0.356 0.4559 0.3994
2012 0.4637 0.2426 0.4839 0.1791 0.5746 0.3322 0.4332 0.3582
2013 0.3824 0.2028 0.5139 0.1322 0.5327 0.2961 0.5017 0.3596
2014 0.4789 0.2119 0.4847 0.1199 0.5384 0.3073 0.4834 0.3600
2015 0.4125 0.1863 0.4761 0.4761 0.4901 0.3162 0.4684 0.4130
2016 0.4116 0.1798 0.4770 0.1062 0.5144 0.2197 0.4638 0.3894
2017 0.269 0.1856 0.4961 0.1026 0.5459 0.303 0.4357 0.4379
2018 0.3314 0.1713 0.4990 0.1153 0.5135 0.2982 0.4029 0.4597

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical

Yearbooks.

Table 5: 2007-2018 Contribution Rates of Emissions from Various Petroleum Products’to Provincial

Differences

Crude Fuel Refinery Other

Gasoline Kerosene Diesel . LPG Petroleum

oil QOils Dry Gas Products
2007 5.00 14.76 5.25 22.92 20.03 8.04 3.19 20.80
2008 3.22 15.77 6.19 24.13 19.17 7.44 3.62 20.46
2009 4.02 17.11 6.29 24.07 16.62 7.51 3.63 20.73
2010 5.14 19.98 7.43 29.56 16.48 7.98 4.39 9.03
2011 5.50 20.79 7.37 27.93 14.58 7.97 4.63 11.24
2012 3.44 22.09 8.65 27.44 14.74 7.63 461 114
2013 3.54 20.88 11.31 22.32 14.56 7.61 6.21 13.58
2014 5.70 21.92 11.23 19.68 14.06 7.72 6.13 13.56
2015 3.97 21.13 12.06 12.06 12.74 8.15 6.24 16.10
2016 3.68 23.02 14.42 18.12 13.77 4.55 6.49 15.95
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2017 1.46 23.48 15.53 16.6 12.52 7.93 6.23 16.24

2018 1.67 23.10 17.13 18.92 11.36 8.06 6.25 13.51

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical
Yearbooks.

Tables 4 and 5 give provincial Gini coefficients and contribution rates of carbon emissions from
various types of oils. In 2007, the regional emissions Gini coefficients for crude oil, kerosene, fuel oils,
LPG, refinery dry gases, and other petroleum products all exceed 0.4, indicating large emissions gaps
between regions. However, differences in emissions from all petroleum products except kerosene
decrease between 2007 and 2018. Diesel shows the maximum average annual decline, nearly 5.9%.
Fuel oil has the largest average Gini coefficient, followed by kerosene and refinery dry gas. The
contribution rates of diesel and gasoline increase by 21.46 and 19.28 percentage points, respectively,
between 2007 and 2018, becoming the two petroleum products with the largest contributions. This may
result from constant economic growth, which has improved living standards and increased sales and
use of vehicles, making gasoline and diesel the main sources of gaps in regional emissions from
petroleum products.

In sum, differences in emissions from raw coal, coke, and gasoline and diesel are the dominant
contributors to differences in emissions from coal, coke, and petroleum products, respectively.

3.1.2 Decomposition of Gini Coefficient Changes

Changes in the Gini coefficients can be decomposed based on carbon emissions, regional emissions
ranking, and population or based on structural, concentration, and comprehensive effects. Either way
will indicate certain key factors behind changes in the Gini coefficient; we will thus apply both
approaches.

In 2012, the State Council of China officially issued the Twelfth Five-Year Plan for Energy
Conservation and Emission Reduction. We thus use the year 2012 as the critical turning point to
explore carbon emissions changes in two periods, 2007 to 2012 and 2012 to 2018. Using Equations (2)
and (3), we decompose changes in the inter-provincial emissions Gini coefficients in these two periods
(Table 6).

Table 6: Decomposition Results of Changes of Provincial Carbon Emissions Differences in China

Project 2007-2012 2012-2018 2007-2018
Gy 0.2310 0.2476 0.2310
AG 0.0166 0.0439 0.0605
AGx 0.0045 0.034 0.0269
AGgr 0.0119 0.0083 0.0317
Decomposition by
carbon emissions, AGp 0.0020 -0.0016 -0.0013
regional emissions AG/Gg 7.19% 17.73% 26.19%
ranking, and AGx/ Gy 1.95% 13.73% 11.65%
population

AGr/ Gy 5.15% 3.35% 13.72%
AGp/ G 0.09% -0.65% -0.56%
Structural Effect 0.0215 -0.0208 0.0034
Concentration Effect 0.0136 0.0525 0.0573
Comprehensive Effect -0.0185 0.0122 -0.0001
Decomposition by Structural Effect/Go 9.32% -8.40% 1.46%

effects .

Concentration

5.89% 21.20% 24.79%

Effect//Gy

Comprehensive

-8.02% 4.93% -0.05%

Effect/Go

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks. GO
refers to the provincial Gini coefficient of carbon emissions in base period; see Eqns. (2) and (3) for definitions of other variables.
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Table 6 shows that from 2007 to 2012, the emissions Gini coefficient increases by 0.0166 or 7.19%;
from 2012 to 2018, the coefficient increases by 0.0439. This may be related to the Chinese
government’s newfound policy focus on reducing GHG emissions. Changes in carbon emissions in
various regions have increased inter-regional emissions differences—i.e., as carbon emissions have
increased, so has the Gini emissions coefficient. This is mainly because economic growth increases
carbon emissions in different regions by different degrees, thereby expanding inequalities. During the
12 years between 2007 and 2018, carbon emissions and regional emissions ranking changes have
increased the emissions Gini coefficient by 11.65% and 13.72% respectively, while population reduced
it by 0.56%. These effects offset one another, and the Gini coefficient rises by 26.19%.

After decomposing the Gini coefficient in terms of different effects, we find that changes in energy
structure make emissions inequality increase by 1.46% between 2007 and 2018. From 2007 to 2012,
the structural effect is responsible for an increase of 9.32% compared to a decrease of 8.4% from 2012
to 2018, suggesting that the energy structural effect has some changes since 2012. The concentration
effect, resulting from changes in the carbon emissions concentrations of diverse energy sources,
increases emissions inequality by 24.79%, thus having the largest influence on the overall Gini
coefficient. The combined effect of the changes of carbon emissions structure and concentration
reduces inter-provincial emissions inequality by 0.05%.

In sum, among the different effects, changes in the concentration of various energy sources are the
main source of variations in inter-provincial emissions inequality. Next, we will explore the root cause
of these emissions changes and empirically analyze various factors’ influences on carbon emissions
differences between provinces.

3.2 Factors Influencing Carbon Emissions in China

The STIRPAT model results are shown in Table 7 and Table 8.

Table 7: Panel Model Regression Results

@ @ (©)] 4
Panel
OoLS OLS 2SLS 2SLS
0.174 0.325* 0.345* 0.379*
Inurb
[0.184] [0.178] [0.204] [0.206]
2.587*** 1.909*** 1.708*** 1.825%**
Ingdp
[0.464] [0.461] [0.598] [0.596]
-0.081*** -0.044* -0.036 -0.044
(Ingdp)?
[0.022] [0.022] [0.029] [0.029]
1.018*** 1.011%** 0.934%*** 0.934***
Inene
[0.060] [0.057] [0.060] [0.060]
0.026 0.091
Inind
[0.063] [0.068]
-0.141%** -0.231%**
Infp
[0.024] [0.053]
Sargan-p 0.000 0.000
Cragg-Donald Wald F
L 95.315 94.562
statistic
R-sq 0.722 0.750 0.6742 0.6753
Obs 360 360 330 330
Controls Yes Yes Yes Yes

Note: * (**, ***) indicates rejecting the null hypothesis at significant level of 10% (5%, 1%).
As Table 7 shows, Panel(1) and Panel(3) incorporates three common variables: population size, per
capita GDP and energy intensity. Panel (2) and (4) add variable Inind, which also examines the impact
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of energy intensity, and Infp which examines government policies on emission reduction. The results
indicate that industrial rate is insignificant at the 10% level. Per capita GDP, energy intensity, urban
population size, and the Chinese government’s financial investments in energy savings and emissions
reductions have thus succeed to significantly change carbon emissions. And these four factors’
significance decreases sequentially. This result undoubtedly verifies our finding in Section 3.1 that coal
is a major contributor to regional disparity in carbon emissions, since the coal consumption has a
significant impact on industry proportion and urbanization proportion. Since the Sargan test p value is 0
and the Cragg-Donald Wald F statistic value is over 90, we accept that all instrumental variables are
effective.

In sum, economic growth and technology progress have great effects while urbanization and
government policy have less significance on carbon emissions in China.

However, this panel model merely reflects the link between national average carbon emissions and
GDP, industry proportion, and so on; it is unable to further explain the specific situations of various
regions. Hence, we will analyze this issue via group analysis.

Table 8: Panel Model Regression Results by Group

(®) (6) 0] ®) (9) (10)
Panel Lower Lower
Higher urb Higher gdp Lower gdp Higher ene
urb ene
0.556* -1.089%** 0.143** -0.820%** -1.320%** 0.177
Inurb
[0.317] [0.320] [0.069] [0.228] [0.448] [0.169]
2.142** 1.038 4.336%** 0.555 -1.221 2.954***
Ingdp
[0.861] [0.860] [1.446] [0.875] [1.067] [0.442]
-0.061 -0.002 -0.158** 0.019 0.125** -0.093***
(Ingdp)?
[0.041] [0.043] [0.066] [0.043] [0.052] [0.022]
1.003*** 0.914*** 0.898*** 0.930*** 0.787*** 0.896***
Inene
[0.125] [0.072] [0.161] [0.062] [0.088] [0.071]
0.032 0.056* 0.060 0.045* 0.101* 0.072
Inind
[0.100] [0.031] [0.122] [0.028] [0.065] [0.061]
-0.150*** -0.066* -0.164*** -0.053 -0.074 -0.065***
Infp
[0.034] [0.034] [0.033] [0.033] [0.052] [0.024]
R-sq 0.753 0.799 0.780 0.798 0.865 0.785
Obs 135 225 120 240 120 240
Controls Yes Yes Yes Yes Yes Yes

Note: * (**, ***) indicates rejecting the null hypothesis at significant level of 10% (5%, 1%).
In this study, provinces were split into different groups according to urbanization, economic
development and technology progress. The results displayed in Table 8.

Panel (5) and (6) reflect that, areas with higher urbanization are more affected by various factors
than areas with low urbanization. More particularly, increased urbanization will reduce carbon
emissions in less urbanized areas. The explanation could be that urbanization influences carbon
emissions through infrastructure construction, public goods supply and other ways, and the increase in
urban population in areas with low urbanization cannot increase these ways significantly, but will
reduce per capita carbon emissions due to population growth.

Panel (7) to (10) demonstrate that the groups with higher gdp and lower energy intensity (higher
technological progress) shows similar characteristics to the group with higher urbanization. In other
words, areas with higher gdp and higher technology progress are influenced by Per capita GDP, energy
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intensity, and the Chinese government’s expenses on carbon reduction, more significantly than that
with lower gdp and lower technology progress. In addition, in areas with low urbanization, less
developed economies or lower technological levels, the increase of industry proportion will
significantly arise regional carbon emissions. It may because of the extensive industrial production in
economically underdeveloped areas.

4. Conclusions and Policy Implications

This paper has explored the contributions of various fossil energy sources to provincial differences
in per capita carbon emissions in China between 2007 and 2018, considering both sources and
incremental changes in carbon emissions via Gini coefficient decomposition. To discover the variables
affecting carbon emissions, we examined the impacts of per capita GDP, energy intensity, industry
proportion, urbanization, and per capita expenditures on energy savings and emissions reductions on
provincial differences in carbon emissions using the STIRPAT Model. Three main conclusions were
reached.

First, carbon emissions differences are primarily driven by coal consumption, changes in regional
emissions ranking affected by carbon emissions, and concentrations of carbon emissions. Differences
in emissions from raw coal, coke, and gasoline and diesel are the dominant contributors to differences
in emissions from coal, coke, and petroleum products, respectively.

Second, the primary factors influencing carbon emissions, in order, are per capita GDP, energy
intensity, urbanization rate, and the government’s fiscal investments in energy savings and emissions
reductions. It’s also worth noting that the increase of industry proportion in economically
underdeveloped areas will significantly increase carbon emissions, while it in the developed areas will
not affect carbon emissions obviously.

Based on the foregoing results, we make two key recommendations accordingly. First, the Chinese
government need to start by attempting to minimize fossil energy consumption. Improving energy
efficiency and saving energy involve multiple sectors of the economy, particularly high
energy-consuming and heavily polluting ones like the chemical, metallurgy, construction,
transportation, and electricity industries. Improving energy efficiency requires a variety of approaches,
including revising regulations related to energy conservation and environmental protection as a means
of guiding and regulating the behavior of governments, companies and citizens. Chinese policymakers
must thus modify and optimize the industrial structure and energy mix while actively promoting the
healthy and prosperous development of the modern service industry.

Second, it is time to transform traditional industries with emerging technologies and embark on a
new road of sustainable development. Traditional industries, such as chemicals, machinery, metallurgy,
and building materials, must be developed through technological innovation to create high value-added
and high-tech goods. The Chinese government may stimulate research, development, and promotion of
technologies like high-efficiency, low-emission energy in both production and consumption by
enhancing its technological innovation system. Meanwhile, by further enhancing international
cooperation, China can benefit from Western countries’ advanced carbon-reductions technologies.

Finally, heeding the link between regional carbon emissions and the factors influencing them, the
Chinese government can formulate regional relevant emissions reduction policies targeting CO;
emissions.
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