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Abstract: This paper explores the contributions of various kinds of fossil energy to provincial 

disparities in per capita carbon emissions within China between 2007 and 2018, considering both 

sources of and incremental changes in carbon emissions via Gini coefficient decomposition. We apply 

a Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model and 

discuss the effects of economic growth, energy intensity, industry production, urbanization rate, and 

energy savings/emissions reduction expenditures on changes in provincial disparities of carbon 

emissions. The findings indicate that China’s economic development, technological progress in energy 

savings and emissions reductions, urbanization rate and the Chinese government’s related financial 

investments, have so far significantly changed carbon emissions. As one measure of technological 

progress, the increase of industry proportion will significantly increase carbon emissions only in 

economically underdeveloped areas.  
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1. Introduction 

Under the threat of a warming global climate, implementing energy savings and emissions 

reduction policies to accomplish concomitant economic and environmental development has become a 

key challenge for countries worldwide. 

On November 12th 2014, in Sino-US joint statement on climate change, China first officially 

declared that it planned to ascend to the peak of carbon dioxide emissions around 2030 and would 

endeavor to arrive at the peak even faster. By 2030, China would make the share of non-fossil energy 

within the primary energy consumption, which reaches approximately 20%, and plan to continue to 

work on this and to increase its intensity over time. However, it is proving quite difficult for China to 

reduce its carbon dioxide emissions currently, as China remains at a critical stage of economic 

transformation with a coal-centered energy structure, severe resource shortages, and a fragile ecological 

environment. Meanwhile, even in provinces with comparable levels of social and economic 

development, there can be notable differences in emissions between them [1]; reducing CO2 emissions 

thus requires recognizing the origins of inter-province differences in carbon emissions, as well as the 

factors that influence these differences. Only by understanding the main causes of these differences can 

policymakers craft better targeted energy savings and emissions reduction policies.  

In the 1970s, the Impact, Population, Affluence, and Technology (IPAT) Model developed from the 

debates between Ehrlich and Holdren [2] and Commoner [3]. Commoner [3] believed that technology was 

the most important factor affecting the environment, while Ehrlich and Holdren [2] explained that the 

environment was significantly impacted by population, wealth, and technology. As such, an improved 

IPAT model, the Stochastic Impacts via Regression on Population, Affluence, and Technology 

(STIRPAT) model, which allows discussion of various influencing elements and is universally used in 

the relevant research [4-7]. The majority of readers have concluded that economic growth and increasing 

population constitute two major factors influencing CO2.  

Most studies have concentrated on a specific country or region while neglecting differences in 

geographic conditions, resource endowments, economic structures, and other characteristics between 

regions. Therefore, the number of studies on regional disparities in carbon emissions has steadily 

grown in recent years. He et al. [8] used the emissions Gini coefficient to compare carbon emissions 
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inequality across Chinese provinces from 2007-2017, and explained that persistent disparities in the 

decoupling of development and emissions across regions are responsible for the increasing inequality 

in the geographical distribution of carbon emissions. Wu and Chen [9] utilized city-level data in China 

from 2005-2020 to calculate a modest decline in the Gini coefficient of carbon emissions, a carbon 

economy concentration index and a Kakwani index indicating an asymmetry between carbon emissions 

and economic development, concluding that energy-intensive characteristics are responsible for a large 

share of carbon inequality. 

This paper will thus analyze provincial differences in carbon emissions using the Gini coefficient, 

which will be decomposed in terms of both sources and incremental changes. In this way, we will be 

able to identify the main sources of and factors influencing regional differences in carbon emissions in 

China, thus providing crucial empirical information for policymakers. The existing studies that 

decompose the Gini coefficient in terms of source and increment changes had only looked at carbon 

emissions from coal and different sectors [10]. 

The remainder of the paper is structured as follows. Section 2 introduces the analytical methods and 

relevant data sources. Section 3 presents results, quantitatively analyzing the contributions of various 

types of energy to provincial differences in carbon emissions via Gini coefficient decomposition and 

applying the STIRPAT model to discuss the elements impacting carbon emissions. Section 4 concludes, 

offering relevant policy suggestions. 

2. Methods and Data 

2.1 Measurement and Calculation of Carbon Emissions 

When calculating carbon emissions, we use a widely applied method described by 

Intergovernmental Panel on Climate Change (IPCC) in its 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories[11]. For the sake of minimizing possible errors in the division of primary 

energy sources, we included all 17 energy types specified in China Energy Statistical Yearbook [12]. 

Using such method and energy consumption in various provinces/cities (from the China Statistical 

Yearbook [13]), we will then be able to calculate regional carbon emissions. 

2.2 Gini Coefficient Decomposition of Provincial Differences of Carbon Emissions 

The combustion of fossil fuels produces CO2. Decomposing the Gini coefficient of carbon 

emissions (“emissions Gini coefficient”) is conducive to analyzing the roles of these different fossil 

energy sources in driving provincial disparities in carbon emissions. It is easiest to decompose the Gini 

coefficient in line with sources: 


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In equation (1), Gi is the pseudo-Gini coefficient calculated for energy type i. In such cases, we will 

get different Gini coefficients for the ith energy source when calculated based on the Lorenz Curve and 

equation (1). Ii gives the ratio of total carbon emissions that are produced by the ith energy source. The 

rate at which energy i contributes to the overall difference can thus be expressed as: %/ GGI ii . Using 

this equation, the contribution of each energy type’s emissions Gini coefficient to overall regional 

differences can be calculated from 2007 to 2018.  

We will thus also decompose changes in the Gini coefficient as a way to explore in depth changes in 

provincial inequality in carbon emissions, 2007-2018. There are two methods to approach this 

decomposition. First, this paper decomposes the 2007-2018 changes in emissions Gini coefficients 

between provinces in line with regional carbon emissions, regional emissions ranking, and population 

share. It can be expressed as: 

PRX GGGG                 (2) 

In this equation, XG  refers to changes in the Gini coefficient brought about by changes in carbon 

emissions while the regional emissions ranking and population share are maintained at the level of the 

base period; RG reflects those resulting from changes in the regional emissions ranking; and PG

refers to those caused by changes in various regions’ population shares, with emissions and regional 
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emissions ranking kept at the base level. 

The second method involves dynamically decomposing the overall Gini coefficient from different 

carbon emissions sources. The equation is:  


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In Equation (3), 
)0()1(

iii III  and 
)0()1(

iii GGG  respectively show the proportion and 

concentration (pseudo-Gini coefficient) changes in emissions from energy i spanning the base and end 

periods. Three components account for the variation in the Gini coefficient: the structural effect caused 

by the energy structure; the concentration effect due to changes in carbon concentrations of the energy 

types; and the comprehensive effect due to changes in both. 

The provincial carbon emissions data required for the Gini coefficient decomposition comes from 

our calculations; year-end population data originates from China Statistical Yearbook. [13] 

2.3 Construction of the STIRPAT Model 

We investigate the elements impacting carbon emissions via the STIRPAT model, using the standard 

form: 

          TdAcPbaI lnlnlnln              (4) 

In this paper, I refers to per capita CO2 emissions, P indicates population size, A indicates per capita 

GDP, and T indicates energy intensity.  

Since CO2 is the most prevalent emitted greenhouse gas (GHG) and has a significant effect on the 

environment, we use per capita CO2 emissions as a measure of impact and come to explore the impact 

of various economic factors on them.  

Urbanization is the principal force driving China’s economic growth and energy demand. Therefore, 

we replace the population indicator in the model with the urbanization rate, to reflect changes in 

energy consumption and carbon emissions brought about by population shifts. 

Per capita GDP is used to reflect an economy’s state of development; different economic 

development phases entail different energy consumption characteristics.  

Energy intensity is often used to capture the economic efficiency of energy utilization , also known 

as energy consumption per unit of GDP and is an important indicator of technological progress. 

However, energy intensity fails to reveal the impact of industrial structure on carbon emissions. 

Therefore, we include the economy’s industry proportion in the model as a secondary indicator for 

energy intensity. 

Though it will not be possible to curtail carbon emissions by merely depending on the market, 

economic instruments can effectively help the government to play a guiding role. Research has shown 

that levying taxes on carbon emissions and increasing financial expenditures can effectively reduce 

emissions [14-15]. Therefore, we will include government expenditures on energy savings and 

environment protection among the explanatory variables so as to explore its influence on regional 

emissions differences. 

Our STIRPAT model thus includes per capita GDP, energy intensity, industry proportion, 

urbanization rate, and per capita spending on energy savings and emissions reductions (reflecting the 

effects of economy, technology, population, and policy, respectively, on carbon emissions). Hence, the 

logarithmic panel model can be represented as shown below: 

itiititititititit fpurbindenegdpgdpce   lnlnlnln)(lnlnln 6543
2

210 (5) 

In equation (5), ceit refers to CO2 emissions, and we decompose economic growth into two parts, 

lngdpit and (ln gdpit)2, by considering the inverted U correlation between carbon emissions and 

economic development; gdp refers to per capita regional GDP. eneit, indit, urbit, and fpit represent energy 

intensity, industry proportion, urbanization rate, and per capita expenditures on energy savings and 

emissions reductions, respectively; i is an individual effect, while it is a random disturbance. 

As the Chinese government changed the statistical definition of its expenditures on energy savings 
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and emissions reductions in 2007, we use 2007-2018 panel data for 30 provinces (excluding Tibet). In 

the model, data on year-end population, regional GDP, energy consumption, urbanization rate, industry 

portion, and fiscal expenditures on energy savings and environment protection come from 2008-2019 

China Statistical Yearbook. 

3. Results 

3.1 Decomposition of Gini Coefficient for Provincial Carbon Emissions 

3.1.1 Decomposition According to Emissions Sources 

Table 1: Gini Coefficients and Contribution Rates of Various Fossil Energy Sources to Inequality in 

Provincial Carbon Emissions 

 Coal Coke products Petroleum Natural Gas Energy 

2007 0.2273 68.98 0.3162 18.21 0.1784 12.81 0.0453 0 0.2310 

2008 0.2330 69.32 0.3281 18.89 0.1733 11.79 0.0394 0 0.2363 

2009 0.2232 67.33 0.3385 20.49 0.1745 12.17 0.0293 0 0.2315 

2010 0.2248 68.89 0.3461 21.29 0.1503 9.82 0.0212 0 0.2308 

2011 0.2382 81.54 0.3604 24.06 0.1521 10.58 0.0444 0 0.2309 

2012 0.2535 72.58 0.3454 19.83 0.1263 7.59 0.0676 0 0.2476 

2013 0.2696 75.35 0.3364 19.33 0.0903 5.33 0.0936 0 0.2526 

2014 0.2842 77.65 0.3195 18.4 0.0656 18.4 0.0964 0 0.2557 

2015 0.2980 78.93 0.3153 17.26 0.0617 3.81 0.0884 0 0.2623 

2016 0.3099 78.87 0.3194 17.3 0.0632 3.82 0.0612 0 0.2709 

2017 0.3125 79.62 0.3266 16.93 0.0570 3.45 0.0877 0 0.2724 

2018 0.3268 78.57 0.3917 19.14 0.0425 2.28 0.0847 0 0.2915 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks. 

Note: As coke products result from secondary combustion, they also release CO2 during combustion. Therefore, they are included in the 

table. 

As shown in Table 1, inequality of carbon emissions in Chinese provinces, as measured by the Gini 

coefficient, increases from 0.2310 in 2007 to 0.2915 in 2018. The largest inter-regional difference is in 

carbon emissions from coke products, for which the average Gini coefficient is 0.3370. Comparatively, 

provincial disparities in carbon emissions from coal and total carbon emissions are similar, between 

0.22 and 0.33, followed by petroleum, with an average Gini coefficient of 0.1113. Natural gas boasts 

the smallest Gini coefficient, below 0.1. 

In line with equation (1), we calculate the rate at which each energy source contributes to provincial 

inequality in carbon emissions. Differences in carbon emissions from coal make the largest 

contribution to overall carbon emissions inequality, responsible for more than 67% from 2007 to 2018, 

with an annual average increase rate of 1.19%. Compared to other fossil energy sources over the same 

period, coke products’ contribution rate increases from 18.21% to 19.14%, and that of petroleum 

decreases from 12.81% to 2.28%, while natural gas contributes close to 0 to provincial differences in 

carbon emissions. 

To more precisely consider the CO2 emissions differences between coal, coke products, and 

petroleum, we use equation (1) to decompose the Gini emissions coefficient in terms of these different 

sources. The results are shown in Tables 2-5. 
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Table 2: 2007-2018 Provincial Emissions Gini Coefficients and Contribution Rates of Various Types of 

Coal 

 Gini Coefficient Contribution Rate % 

 Raw Coal Washed Coal 
Other cleaned 

coal 
Briquette Raw Coal Washed Coal 

Other cleaned 

coal 
Briquette 

2007 0.2374 0.2713 0.4189 0.1420 95.46 1.87 2.95 0.28 

2008 0.2425 0.2975 0.4338 0.0118 94.79 2.2 2.98 0.03 

2009 0.2385 0.1656 0.3663 0.0131 95.94 1.48 2.55 0.03 

2010 0.2427 0.0376 0.2952 0.0480 97.04 0.61 2.24 0.11 

2011 0.2557 0.0512 0.2491 0.0828 97.4 0.58 1.85 0.17 

2012 0.2697 0.0135 0.3666 0.1665 97.12 0.16 2.7 0.34 

2013 0.2847 0.0801 0.2733 0.1528 97.05 0.94 1.72 0.29 

2014 0.3026 0.0189 0.2662 0.1972 97.70 0.23 1.71 0.36 

2015 0.3182 0.0167 0.2690 0.2374 97.85 0.17 1.55 0.43 

2016 0.3264 — 0.2641 0.1723 97.49 — 2.18 0.33 

2017 0.3311 — 0.3257 0.1107 97.47 — 2.46 0.17 

2018 0.3369 — 0.4498 0.0789 97.53 — 2.47 0.12 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks. 

Note: Owing to the absence of data on Washed Coal consumption in 2016-2018, there is no related carbon emission data. 

As Table 2 shows, from 2007 to 2018, the carbon emissions inequalities arising from raw coal 

generally grew, while the carbon emission inequality of washed coal decreased year by year. For other 

washed coal and briquette, the Gini coefficient fluctuate significantly. In 2018, other cleaned coal 

accounted for the greatest proportion of regional carbon emissions differences arising from coal, with a 

Gini coefficient of 0.4498. This is followed by raw coal and briquette, with respective Gini coefficients 

of 0.3369 and 0.0789. Raw coal plays a dominant role in regional emissions inequality: its contribution 

rate to regional differences in coal-based carbon emissions remains over 94% for the entire period. 

Table 3: 2007-2018 Provincial Emissions Gini Coefficients and Contribution Rates of Various Coke 

Products 

 Gini Coefficient Contribution Rate % 

 Coke COG 
Other 

Gases 

Other Coke 

Products 
Coke COG 

Other 

Gases 

Other Coke 

Products 

2007 0.4037 0.5419 0.3864 0.5639 93.13 0.69 2.22 3.96 

2008 0.4119 0.4913 0.3411 0.5877 93.35 0.63 1.92 4.09 

2009 0.4146 0.4480 0.3697 0.5370 93.53 0.54 2.29 3.64 

2010 0.4188 0.4216 0.1156 0.5273 95.62 0.57 0.04 3.77 

2011 0.4362 0.4479 0.0937 0.525 95.76 0.58 0.04 3.62 

2012 0.4281 0.4321 0.0782 0.4762 96.44 0.56 0.03 2.97 

2013 0.4300 0.4431 0.0240 0.4427 95.86 0.59 0.01 3.55 

2014 0.4210 0.4243 0.0462 0.4038 95.88 0.56 0.01 3.56 

2015 0.4236 0.4205 0.0231 0.3979 95.78 0.55 0.01 3.66 

2016 0.4287 0.4163 0.1033 0.4461 95.26 0.54 0.03 4.17 

2017 0.4289 0.4039 0.1965 0.4637 95.05 0.53 0.05 4.37 

2018 0.4682 0.4072 0.1232 0.5299 96.12 0.50 0.03 3.35 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical 

Yearbooks.  

The Gini emissions coefficients of coke, COG and other coke products are relatively high, generally 
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above 0.4 (Table 3). Regional differences are thus relatively pronounced. The emissions Gini 

coefficients of COG, other gases, and other coke products decrease by reaching 24.86%, 68.12%, and 

6.03%, respectively. However, the emissions Gini coefficient for coke increases from 0.4037 to 0.4682. 

The contribution rates show that coke itself contributes the most to cross-regional inequality in carbon 

emissions from coke products, with a contribution rate in excess of 93% and growing by 3.21% 

between 2007 and 2018.  

Table 4: 2007-2018 Emissions Gini Coefficients for Various Petroleum Products  

 

Crude 

Oil  

Gasoline Kerosene Diesel Fuel Oils LPG 
Refinery 

Dry Gas 

Other 

Petroleum 

Products 

2007 0.5408 0.2610 0.4917 0.2243 0.6211 0.4365 0.4665 0.4615 

2008 0.4450 0.2672 0.5195 0.2159 0.605 0.3864 0.4866 0.4504 

2009 0.5198 0.2831 0.5191 0.2122 0.5857 0.3977 0.4704 0.4458 

2010 0.5576 0.2629 0.4952 0.2152 0.588 0.3718 0.4524 0.3156 

2011 0.5707 0.2562 0.4701 0.1978 0.5557 0.356 0.4559 0.3994 

2012 0.4637 0.2426 0.4839 0.1791 0.5746 0.3322 0.4332 0.3582 

2013 0.3824 0.2028 0.5139 0.1322 0.5327 0.2961 0.5017 0.3596 

2014 0.4789 0.2119 0.4847 0.1199 0.5384 0.3073 0.4834 0.3600 

2015 0.4125 0.1863 0.4761 0.4761 0.4901 0.3162 0.4684 0.4130 

2016 0.4116 0.1798 0.4770 0.1062 0.5144 0.2197 0.4638 0.3894 

2017 0.269 0.1856 0.4961 0.1026 0.5459 0.303 0.4357 0.4379 

2018 0.3314 0.1713 0.4990 0.1153 0.5135 0.2982 0.4029 0.4597 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical 

Yearbooks. 

Table 5: 2007-2018 Contribution Rates of Emissions from Various Petroleum Products’ to Provincial 

Differences 

 

Crude 

Oil 

Gasoline Kerosene Diesel 
Fuel 

Oils 
LPG 

Refinery 

Dry Gas 

Other 

Petroleum 

Products 

2007 5.00 14.76 5.25 22.92 20.03 8.04 3.19 20.80 

2008 3.22 15.77 6.19 24.13 19.17 7.44 3.62 20.46 

2009 4.02 17.11 6.29 24.07 16.62 7.51 3.63 20.73 

2010 5.14 19.98 7.43 29.56 16.48 7.98 4.39 9.03 

2011 5.50 20.79 7.37 27.93 14.58 7.97 4.63 11.24 

2012 3.44 22.09 8.65 27.44 14.74 7.63 4.61 11.4 

2013 3.54 20.88 11.31 22.32 14.56 7.61 6.21 13.58 

2014 5.70 21.92 11.23 19.68 14.06 7.72 6.13 13.56 

2015 3.97 21.13 12.06 12.06 12.74 8.15 6.24 16.10 

2016 3.68 23.02 14.42 18.12 13.77 4.55 6.49 15.95 
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2017 1.46 23.48 15.53 16.6 12.52 7.93 6.23 16.24 

2018 1.67 23.10 17.13 18.92 11.36 8.06 6.25 13.51 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical 

Yearbooks. 

Tables 4 and 5 give provincial Gini coefficients and contribution rates of carbon emissions from 

various types of oils. In 2007, the regional emissions Gini coefficients for crude oil, kerosene, fuel oils, 

LPG, refinery dry gases, and other petroleum products all exceed 0.4, indicating large emissions gaps 

between regions. However, differences in emissions from all petroleum products except kerosene 

decrease between 2007 and 2018. Diesel shows the maximum average annual decline, nearly 5.9%. 

Fuel oil has the largest average Gini coefficient, followed by kerosene and refinery dry gas. The 

contribution rates of diesel and gasoline increase by 21.46 and 19.28 percentage points, respectively, 

between 2007 and 2018, becoming the two petroleum products with the largest contributions. This may 

result from constant economic growth, which has improved living standards and increased sales and 

use of vehicles, making gasoline and diesel the main sources of gaps in regional emissions from 

petroleum products. 

In sum, differences in emissions from raw coal, coke, and gasoline and diesel are the dominant 

contributors to differences in emissions from coal, coke, and petroleum products, respectively. 

3.1.2 Decomposition of Gini Coefficient Changes 

Changes in the Gini coefficients can be decomposed based on carbon emissions, regional emissions 

ranking, and population or based on structural, concentration, and comprehensive effects. Either way 

will indicate certain key factors behind changes in the Gini coefficient; we will thus apply both 

approaches.  

In 2012, the State Council of China officially issued the Twelfth Five-Year Plan for Energy 

Conservation and Emission Reduction. We thus use the year 2012 as the critical turning point to 

explore carbon emissions changes in two periods, 2007 to 2012 and 2012 to 2018. Using Equations (2) 

and (3), we decompose changes in the inter-provincial emissions Gini coefficients in these two periods 

(Table 6). 

Table 6: Decomposition Results of Changes of Provincial Carbon Emissions Differences in China 

Project  2007-2012 2012-2018 2007-2018 

G0 0.2310 0.2476 0.2310 

ΔG 0.0166 0.0439 0.0605 

Decomposition by 

carbon emissions, 

regional emissions 

ranking, and 

population  

ΔGX 0.0045 0.034 0.0269 

ΔGR 0.0119 0.0083 0.0317 

ΔGP 0.0020 -0.0016 -0.0013 

ΔG/G0 7.19% 17.73% 26.19% 

ΔGX/ G0 1.95% 13.73% 11.65% 

ΔGR/ G0 5.15% 3.35% 13.72% 

ΔGP/ G0 0.09% -0.65% -0.56% 

Decomposition by 

effects 

Structural Effect 0.0215 -0.0208 0.0034 

Concentration Effect 0.0136 0.0525 0.0573 

Comprehensive Effect -0.0185 0.0122 -0.0001 

Structural Effect/G0 9.32% -8.40% 1.46% 

Concentration 

Effect//G0 
5.89% 21.20% 24.79% 

Comprehensive 

Effect/G0 
-8.02% 4.93% -0.05% 

Source: Authors’ calculations using carbon emissions data and year-end population from the 2008-2019 China Statistical Yearbooks. G0 

refers to the provincial Gini coefficient of carbon emissions in base period; see Eqns. (2) and (3) for definitions of other variables.  
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Table 6 shows that from 2007 to 2012, the emissions Gini coefficient increases by 0.0166 or 7.19%; 

from 2012 to 2018, the coefficient increases by 0.0439. This may be related to the Chinese 

government’s newfound policy focus on reducing GHG emissions. Changes in carbon emissions in 

various regions have increased inter-regional emissions differences—i.e., as carbon emissions have 

increased, so has the Gini emissions coefficient. This is mainly because economic growth increases 

carbon emissions in different regions by different degrees, thereby expanding inequalities. During the 

12 years between 2007 and 2018, carbon emissions and regional emissions ranking changes have 

increased the emissions Gini coefficient by 11.65% and 13.72% respectively, while population reduced 

it by 0.56%. These effects offset one another, and the Gini coefficient rises by 26.19%. 

After decomposing the Gini coefficient in terms of different effects, we find that changes in energy 

structure make emissions inequality increase by 1.46% between 2007 and 2018. From 2007 to 2012, 

the structural effect is responsible for an increase of 9.32% compared to a decrease of 8.4% from 2012 

to 2018, suggesting that the energy structural effect has some changes since 2012. The concentration 

effect, resulting from changes in the carbon emissions concentrations of diverse energy sources, 

increases emissions inequality by 24.79%, thus having the largest influence on the overall Gini 

coefficient. The combined effect of the changes of carbon emissions structure and concentration 

reduces inter-provincial emissions inequality by 0.05%. 

In sum, among the different effects, changes in the concentration of various energy sources are the 

main source of variations in inter-provincial emissions inequality. Next, we will explore the root cause 

of these emissions changes and empirically analyze various factors’ influences on carbon emissions 

differences between provinces.  

3.2 Factors Influencing Carbon Emissions in China 

The STIRPAT model results are shown in Table 7 and Table 8. 

Table 7: Panel Model Regression Results 

Panel 

(1) (2) (3) (4) 

OLS OLS 2SLS 2SLS 

lnurb 
0.174 

[0.184] 

0.325* 

[0.178] 

0.345* 

[0.204] 

0.379* 

[0.206] 

lngdp 
2.587*** 

[0.464] 

1.909*** 

[0.461] 

1.708*** 

[0.598] 

1.825*** 

[0.596] 

(lngdp)2 
-0.081*** 

[0.022] 

-0.044* 

[0.022] 

-0.036 

[0.029] 

-0.044 

[0.029] 

lnene 
1.018*** 

[0.060] 

1.011*** 

[0.057] 

0.934*** 

[0.060] 

0.934*** 

[0.060] 

lnind  
0.026 

[0.063] 
 

0.091 

[0.068] 

lnfp  
-0.141*** 

[0.024] 
 

-0.231*** 

[0.053] 

Sargan-p   0.000 0.000 

Cragg-Donald Wald F 

statistic 
  95.315 94.562 

R-sq 0.722 0.750 0.6742 0.6753 

Obs 360 360 330 330 

Controls Yes Yes Yes Yes 

Note: * (**, ***) indicates rejecting the null hypothesis at significant level of 10% (5%, 1%). 

As Table 7 shows, Panel(1) and Panel(3) incorporates three common variables: population size, per 

capita GDP and energy intensity. Panel (2) and (4) add variable lnind, which also examines the impact 
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of energy intensity, and lnfp which examines government policies on emission reduction. The results 

indicate that industrial rate is insignificant at the 10% level. Per capita GDP, energy intensity, urban 

population size, and the Chinese government’s financial investments in energy savings and emissions 

reductions have thus succeed to significantly change carbon emissions. And these four factors’ 

significance decreases sequentially. This result undoubtedly verifies our finding in Section 3.1 that coal 

is a major contributor to regional disparity in carbon emissions, since the coal consumption has a 

significant impact on industry proportion and urbanization proportion. Since the Sargan test p value is 0 

and the Cragg-Donald Wald F statistic value is over 90, we accept that all instrumental variables are 

effective.  

In sum, economic growth and technology progress have great effects while urbanization and 

government policy have less significance on carbon emissions in China. 

However, this panel model merely reflects the link between national average carbon emissions and 

GDP, industry proportion, and so on; it is unable to further explain the specific situations of various 

regions. Hence, we will analyze this issue via group analysis. 

Table 8: Panel Model Regression Results by Group 

Panel 

(5) (6) (7) (8) (9) (10) 

Higher urb 

Lower 

urb 

Higher gdp Lower gdp Higher ene 

Lower 

ene 

lnurb 

0.556* 

[0.317] 

-1.089*** 

[0.320] 

0.143** 

[0.069] 

-0.820*** 

[0.228] 

-1.320*** 

[0.448] 

0.177 

[0.169] 

lngdp 

2.142** 

[0.861] 

1.038 

[0.860] 

4.336*** 

[1.446] 

0.555 

[0.875] 

-1.221 

[1.067] 

2.954*** 

[0.442] 

(lngdp)2 

-0.061 

[0.041] 

-0.002 

[0.043] 

-0.158** 

[0.066] 

0.019 

[0.043] 

0.125** 

[0.052] 

-0.093*** 

[0.022] 

lnene 

1.003*** 

[0.125] 

0.914*** 

[0.072] 

0.898*** 

[0.161] 

0.930*** 

[0.062] 

0.787*** 

[0.088] 

0.896*** 

[0.071] 

lnind 

0.032 

[0.100] 

0.056* 

[0.031] 

0.060 

[0.122] 

0.045* 

[0.028] 

0.101* 

[0.065] 

0.072 

[0.061] 

lnfp 

-0.150*** 

[0.034] 

-0.066* 

[0.034] 

-0.164*** 

[0.033] 

-0.053 

[0.033] 

-0.074 

[0.052] 

-0.065*** 

[0.024] 

R-sq 0.753 0.799 0.780 0.798 0.865 0.785 

Obs 135 225 120 240 120 240 

Controls Yes Yes Yes Yes Yes Yes 

Note: * (**, ***) indicates rejecting the null hypothesis at significant level of 10% (5%, 1%). 

In this study, provinces were split into different groups according to urbanization, economic 

development and technology progress. The results displayed in Table 8.  

Panel (5) and (6) reflect that, areas with higher urbanization are more affected by various factors 

than areas with low urbanization. More particularly, increased urbanization will reduce carbon 

emissions in less urbanized areas. The explanation could be that urbanization influences carbon 

emissions through infrastructure construction, public goods supply and other ways, and the increase in 

urban population in areas with low urbanization cannot increase these ways significantly, but will 

reduce per capita carbon emissions due to population growth. 

Panel (7) to (10) demonstrate that the groups with higher gdp and lower energy intensity (higher 

technological progress) shows similar characteristics to the group with higher urbanization. In other 

words, areas with higher gdp and higher technology progress are influenced by Per capita GDP, energy 
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intensity, and the Chinese government’s expenses on carbon reduction, more significantly than that 

with lower gdp and lower technology progress. In addition, in areas with low urbanization, less 

developed economies or lower technological levels, the increase of industry proportion will 

significantly arise regional carbon emissions. It may because of the extensive industrial production in 

economically underdeveloped areas. 

4. Conclusions and Policy Implications 

This paper has explored the contributions of various fossil energy sources to provincial differences 

in per capita carbon emissions in China between 2007 and 2018, considering both sources and 

incremental changes in carbon emissions via Gini coefficient decomposition. To discover the variables 

affecting carbon emissions, we examined the impacts of per capita GDP, energy intensity, industry 

proportion, urbanization, and per capita expenditures on energy savings and emissions reductions on 

provincial differences in carbon emissions using the STIRPAT Model. Three main conclusions were 

reached. 

First, carbon emissions differences are primarily driven by coal consumption, changes in regional 

emissions ranking affected by carbon emissions, and concentrations of carbon emissions. Differences 

in emissions from raw coal, coke, and gasoline and diesel are the dominant contributors to differences 

in emissions from coal, coke, and petroleum products, respectively.  

Second, the primary factors influencing carbon emissions, in order, are per capita GDP, energy 

intensity, urbanization rate, and the government’s fiscal investments in energy savings and emissions 

reductions. It’s also worth noting that the increase of industry proportion in economically 

underdeveloped areas will significantly increase carbon emissions, while it in the developed areas will 

not affect carbon emissions obviously. 

Based on the foregoing results, we make two key recommendations accordingly. First, the Chinese 

government need to start by attempting to minimize fossil energy consumption. Improving energy 

efficiency and saving energy involve multiple sectors of the economy, particularly high 

energy-consuming and heavily polluting ones like the chemical, metallurgy, construction, 

transportation, and electricity industries. Improving energy efficiency requires a variety of approaches, 

including revising regulations related to energy conservation and environmental protection as a means 

of guiding and regulating the behavior of governments, companies and citizens. Chinese policymakers 

must thus modify and optimize the industrial structure and energy mix while actively promoting the 

healthy and prosperous development of the modern service industry. 

Second, it is time to transform traditional industries with emerging technologies and embark on a 

new road of sustainable development. Traditional industries, such as chemicals, machinery, metallurgy, 

and building materials, must be developed through technological innovation to create high value-added 

and high-tech goods. The Chinese government may stimulate research, development, and promotion of 

technologies like high-efficiency, low-emission energy in both production and consumption by 

enhancing its technological innovation system. Meanwhile, by further enhancing international 

cooperation, China can benefit from Western countries’ advanced carbon-reductions technologies. 

Finally, heeding the link between regional carbon emissions and the factors influencing them, the 

Chinese government can formulate regional relevant emissions reduction policies targeting CO2 

emissions.  
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