Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2023, 4(4); doi: 10.25236/AJMC.2023.040401.

A.C. impedance of γ-LiAlO2 film prepared by laser CVD

Author(s)

Chen Chi

Corresponding Author:
Chen Chi
Affiliation(s)

School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China

Abstract

(110)-oriented γ-LiAlO2 film consisting of granular grains was prepared by laser CVD. The complex impedance of polycrystalline γ-LiAlO2 film showed dispersions due to bulk, grain-boundary and electrode. Temperature dependence of the electrical conductivity for γ-LiAlO2 film, polycrystalline sintered sample and single crystals obeyed Arrhenius behaviour. The electrical conductivity (σT) of the γ-LiAlO2 film reached 196 S∙m-1∙K at 1173 K, nearly 5 times higher than the maximum value of γ-LiAlO2 single crystals and polycrystalline sintered samples.

Keywords

γ-LiAlO2; electrical conductivity; impedance; arrhenius behaviour

Cite This Paper

Chen Chi. A.C. impedance of γ-LiAlO2 film prepared by laser CVD. Academic Journal of Materials & Chemistry (2023) Vol. 4, Issue 4: 1-6. https://doi.org/10.25236/AJMC.2023.040401.

References

[1] M.M.C. Chou, H.C. Huang, Y.F. Chang, et al. Defects and acoustic properties of LiAlO2. Appl. Phys. Lett., 2006, 88:161906.

[2] A.N. Webb, J.W.B. Mather, R.M. Suggitt. Studies of the Molten Carbonate Electrolyte Fuel Cell. J. Electrochem. Soc., 1965, 112: 1059-1063.

[3] J.A. Shearer, S.W. Tam, C.E. Johnson. Tritium diffusion in lithium oxide solid breeder materials. Conference: ANS annual meeting, Detroit, MI, USA, 12 Jun 1983, 36:1066.

[4] A.V. Sotnikov, H. Schmidt, M. Weihnacht, E.P. Smirnova, T.Y. Chemekova, Y.N. Makarov. Elastic and piezoelectric properties of AlN and LiAlO2 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2010, 57: 808-811.

[5] F. Alessandrini, C. Alvani, S. Casadio, M.R. Mancini, C.A. Nannetti. In-situ tritium release (CORELLI-2 experiment) and ex-reactor ionic conductivity of substoichiometric LiAlO2 breeder ceramics. J. Nucl. Mater, 1995, 224: 236-244.

[6] C. Alvani, S. Casadio, L. Lorenzini, G. Brambilla. FABRICATION OF POROUS LiAlO2 CERAMIC BREEDER MATERIAL. Fusion Technol., 1986, 10: 106-112.

[7] H. Ohno, S. Konishi, T. Nagasaki, T. Kurasawa, H. Katsuta, H. Watanabe. Correlation behavior of lithium and tritium in some solid breeder materials. J. Nucl. Mater, 1985, 133:181-185.

[8] Z. Wen, Z. Gu, X. Xu, X. Zhu. Research on the preparation, electrical and mechanical properties of γ-LiAlO2 ceramics. J. Nucl. Mater., Part B 2004, 329: 1283-1286.

[9] M.A. Valenzuela, J. Jimenez-Becerril, P. Bosch, S. Bulbulian, V.H. Lara. Sol-gel synthesis of lithium aluminate. J. Am. Ceram. Soc., 1996, 79: 455-460.

[10] T. Frianeza-Kullberg, D. Mcdonald, K. Davis. Effect of temperature on formation of lithium aluminate particles by calcination. Ceram. Trans., 1990, 12: 147.

[11] C. Alvanic, S. Casadio. A wet method to prepare gamma lithium aluminate with 1:1 ratio of Li/Al. EP235099, 1987.

[12] K.W Sang, S Binpark, et al. Research on electrical properties of LiAlO2 ceramic. J. Nucl. Mater., 1998, 257: 172.

[13] L.M. Carrera, J. Jimenez-Becerril, P. Bosch, S. Bulbulian. Effect of synthesis techniques on crystallite size and morphology of lithium aluminate. J. Am. Ceram. Soc., 1995, 78: 933-938.

[14] C. Chi, H. Katsui, R. Tu, T. Goto. Preparation of Li–Al–O films by laser chemical vapor deposition. Mater. Chem. Phys., 2014, 143: 1338-1343.

[15] X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang, S. Dong. Methods to study the ionic conductivity of polymeric electrolytes using a.c. impedance spectroscopy. J. Solid State Electrochem., 2001, 6: 8-15.

[16] J. Gong, Y. Li, Z. Tang, Y. Xie, Z. Zhang. Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia. Mater. Chem. Phys., 2002, 76:212-216.