Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(8); doi: 10.25236/FMSR.2023.050813.

Research Progress in Lumbar Interbody Fusion (LIF) Techniques and Bone Biomaterials

Author(s)

Hualv Liu1,4, Changsheng Liao1,3, Weiwei Wang1,3, Pengfei Han3, Shilei Qin2,4, Yunfeng Xu2,4

Corresponding Author:
Yunfeng Xu
Affiliation(s)

1Department of Graduate School, Graduate Student Department of Changzhi Medical College, Changzhi, Shanxi, 046000, China

2Department of Orthopaedics, Changzhi Yunfeng Hospital, Changzhi, Shanxi, 046000, China

3Department of Orthopaedics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China

4Changzhi Spinal Disease Research Institute, Changzhi, Shanxi, 046000, China

Abstract

This paper aims to review recent research progress in lumbar interbody fusion (LIF) techniques and bone biomaterials for treating low back pain resulting from lumbar instability and/or deformity. A comprehensive search was conducted in PubMed, Science Citation Index-Expanded (SCI-E), and SpringerLink databases from their inception until April 2023. The search focused on relevant articles published within the past five years, using keywords such as lumbar fusion approach, lumbar interbody fusion cage, lumbar fusion stem cells, lumbar fusion biomaterials, and bone biology of lumbar fusion. Currently, lumbar interbody fusion techniques encompass posterior, anterior, lateral, oblique, and minimally invasive approaches. The transforaminal oblique lumbar fusion approach is gaining popularity due to its ability to minimize paraspinal muscle dissection and nerve traction. Despite advancements in surgical techniques, the incidence of fusion failure after LIF remains high, ranging from 7% to 20%, and is even higher in patients with osteoporosis. This review also discusses the improvement of fusion materials properties and the development of new bone biological products incorporating nanomaterials to enhance the release of effective osteogenic proteins and mesenchymal stem cells for promoting lumbar interbody fusion. Significant advancements have been made in surgical techniques for LIF over the past few decades. However, postoperative nonfusion continues to be a major challenge. Future solutions are expected to arise through the development of more efficient surgical techniques, fusion cages, and bone biomaterials.

Keywords

Lumbar interbody fusion, Interbody fusion, Surgical techniques, Bone biomaterials, Bone biologics

Cite This Paper

Hualv Liu, Changsheng Liao, Weiwei Wang, Pengfei Han, Shilei Qin, Yunfeng Xu. Research Progress in Lumbar Interbody Fusion (LIF) Techniques and Bone Biomaterials. Frontiers in Medical Science Research (2023) Vol. 5, Issue 8: 93-100. https://doi.org/10.25236/FMSR.2023.050813.

References

[1] Saini R, Sharma A, Dave M B. Clinical reporting of magnetic resonance imaging, the way forward for patients with lumbar disc herniation: a prospective correlational study[J]. Cureus Journal of Medical Science, 2022, 14(7): e27232. DOI:10.7759/cureus.27232.

[2] Mo A Z, Gjolaj J P. Axial low back pain in elite athletes [J]. Clinics in Sports Medicine, 2021, 40(3): 491–499. DOI:10.1016/j.csm.2021.03.005.

[3] Hayden J A, Ellis J, Ogilvie R, et al. Exercise therapy for chronic low back pain [J]. Cochrane Database of Systematic Reviews, 2021(9): CD009790. DOI:10.1002/14651858.CD009790.pub2.

[4] Platz U, Halm H, Thomsen B, et al. Anterior lumbar interbody fusion (alif) or transforaminal lumbar interbody fusion (tlif) for fusion surgery in l5/s1 what is the bestway to restore a physiological alignment[J]. Zeitschrift Fur Orthopadie Und Unfallchirurgie, 2022, 160(6): 646–656. DOI:10.1055/a-1560-3106.

[5] Mccloskey K, Singh S, Ahmad H S, et al. Standardizing lumbar interbody fusion nomenclature[J]. Clinical Spine Surgery, 2023, 36(5): 217–219. DOI:10.1097/BSD.0000000000001425.

[6] Liang Y, Zhao Y, Xu S, et al. Effects of different orientations of cage implantation on lumbar interbody fusion[J]. World Neurosurgery, 2020, 140: E97–E104. DOI:10.1016/j.wneu.2020.04.167.

[7] Yu Y, Robinson D L, Ackland D C, et al. Influence of the geometric and material properties of lumbar endplate on lumbar interbody fusion failure: a systematic review [J]. Journal of Orthopaedic Surgery and Research, 2022, 17(1): 224. DOI:10.1186/s13018-022-03091-8.

[8] Gupta A, Cha T, Schwab J, et al. Osteoporosis increases the likelihood of revision surgery following a long spinal fusion for adult spinal deformity [J]. Spine Journal, 2021, 21(1): 134–140. DOI:10.1016/j.spinee.2020.08.002.

[9] Garcia De Frutos A, Gonzalez-Tartiere P, Bonet R C, et al. Randomized clinical trial: expanded autologous bone marrow mesenchymal cells combined with allogeneic bone tissue, compared with autologous iliac crest graft in lumbar fusion surgery [J]. Spine Journal, 2020, 20(12): 1899–1910. DOI:10.1016/j.spinee.2020.07.014.

[10] Pokharel R K, Paudel S, Lakhey R B. Iliac crest bone graft harvesting: modified technique for reduction of complications [J]. Journal of Nepal Medical Association, 2022, 60(247): 325–328. DOI:10.31729/jnma.7086.

[11] Maiti T K, Konar S K, Bir S C, et al. Ralph bingham cloward (1908-2000): spine polymath[J]. World Neurosurgery, 2016, 89: 562–567. DOI:10.1016/j.wneu.2015.06.061.

[12] Feeley A, Mcdonnell J, Feeley I, et al. Obesity: an independent risk factor for complications in anterior lumbar interbody fusion? a systematic review[J]. GLOBAL SPINE JOURNAL, 2022, 12(8): 1894–1903. DOI:10.1177/21925682211072849.

[13] Mittal S, Sudhakar P V, Ahuja K, et al. Deformity correction with interbody fusion using lateral versus posterior approach in adult degenerative scoliosis: a systematic review and observational meta-analysis[J]. ASIAN SPINE JOURNAL, 2023, 17(2): 431–449. DOI:10.31616/asj.2022.0040.

[14] Kobayashi K, Ando K, Kato F, et al. Reoperation within 2 years after lumbar interbody fusion: a multicenter study [J]. European Spine Journal, 2018, 27(8): 1972–1980. DOI:10.1007/s00586-018-5508-1.

[15] Maruenda J I, Barrios C, Garibo F, et al. Adjacent segment degeneration and revision surgery after circumferential lumbar fusion: outcomes throughout 15 years of follow-up[J]. European Spine Journal, 2016, 25(5): 1550–1557. DOI:10.1007/s00586-016-4469-5.

[16] Rickert M, Rauschmann M, Fleege C, et al. Interbody fusion procedures [J]. Orthopade, 2015, 44(2): 104–113. DOI:10.1007/s00132-015-3076-1.

[17] Yang S, Sun T, Zhang L, et al. Stress distribution of different pedicle screw insertion techniques following single-segment tlif: a finite element analysis study [J]. Orthopaedic Surgery, 2023, 15(4): 1153–1164. DOI:10.1111/os.13671.

[18] Rezk E M A, Elkholy A R, Shamhoot E A. Transforaminal lumbar interbody fusion (tlif) versus posterior lumbar interbody fusion (plif) in the treatment of single-level lumbar spondylolisthesis[J]. Egyptian Journal of Neurosurgery, 2019, 34(1): 26. DOI:10.1186/s41984-019-0052-9.

[19] Ge D H, Stekas N D, Varlotta C G, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques open tlif versus wiltse mis tlif[J]. SPINE, 2019, 44(9): E555–E560. DOI:10.1097/BRS.0000000000002903.

[20] Chang C-W, Fu T-S, Chen W-J, et al. Management of infected transforaminal lumbar interbody fusion cage in posterior degenerative lumbar spine surgery[J]. World Neurosurgery, 2019, 126: E330–E341. DOI:10.1016/j.wneu.2019.02.050.

[21] Plantz M A, Hsu W K. Single-level posterolateral fusion (plf) alone and posterior interbody fusion (plif/tlif) alone lead to a decreased risk of short-term complications compared to combined plf with plif/tlif procedures [J]. Spine, 2020, 45(21): E1391–E1399. DOI:10.1097/BRS.0000000000003615.

[22] Panchal R, Denhaese R, Hill C, et al. Anterior and lateral lumbar interbody fusion with supplemental interspinous process fixation: outcomes from a multicenter, prospective, randomized, controlled study[J]. International Journal of Spine Surgery, 2018, 12(2): 172–184. DOI:10.14444/5025.

[23] Yun D-J, Yu J-W, Jeon S-H, et al. Salvage anterior lumbar interbody fusion for pseudoarthrosis after posterior or transforaminal lumbar interbody fusion: a review of 10 patients[J]. World Neurosurgery, 2018, 111: E746–E755. DOI:10.1016/J.WNEU.2017.12.155.

[24] Lee D H, Lee D-G, Hwang J S, et al. Clinical and radiological results of indirect decompression after anterior lumbar interbody fusion in central spinal canal stenosis[J]. Journal Of Neurosurgery-Spine, 2021, 34(4): 564–572. DOI:10.3171/2020.7.SPINE191335.

[25] Kapustka B, Kiwic G, Chodakowski P, et al. Anterior lumbar interbody fusion (alif): biometrical results and own experiences [J]. Neurosurgical Review, 2020, 43(2): 687–693. DOI:10.1007/s10143-019-01108-1.

[26] Choy W J, Abi-Hanna D, Cassar L P, et al. History of integral fixation for anterior lumbar interbody fusion (alif): the hartshill horseshoe [J]. World Neurosurgery, 2019, 129: 394–400. DOI: 10.1016/j.wneu.2019.06.134.

[27] Thomas J A, Menezes C, Buckland A J, et al. Single-position circumferential lumbar spinal fusion: an overview of terminology, concepts, rationale and the current evidence base [J]. European Spine Journal, 2022, 31(9): 2167–2174. DOI:10.1007/s00586-022-07229-4.

[28] Lai O, Li H, Chen Q, et al. Comparison of staged llif combined with posterior instrumented fusion with posterior instrumented fusion alone for the treatment of adult degenerative lumbar scoliosis with sagittal imbalance [J]. Bmc Musculoskeletal Disorders, 2023, 24(1): 260. DOI:10.1186/s12891-023-06340-x.

[29] Macki M, Hamilton T, Haddad Y W, et al. Expandable cage technology-transforaminal, anterior, and lateral lumbar interbody fusion[J]. Operative Neurosurgery, 2021, 21: S69–S80. DOI:10. 1093/ons/opaa342.

[30] Boonsirikamchai W, Phisalpapra P, Kositamongkol C, et al. Lateral lumbar interbody fusion (llif) reduces total lifetime cost compared with posterior lumbar interbody fusion (plif) for single-level lumbar spinal fusion surgery: a cost-utility analysis in thailand[J]. Journal of Orthopaedic Surgery And Research, 2023, 18(1): 115. DOI:10.1186/s13018-023-03588-w.

[31] Li J, Sun Y, Guo L, et al. Efficacy and safety of a modified lateral lumbar interbody fusion in l4-5 lumbar degenerative diseases compared with traditional xlif and olif: a retrospective cohort study of 156 cases[J]. Bmc Musculoskeletal Disorders, 2022, 23(1): 217. DOI:10.1186/s12891-022-05138-7.

[32] Wellington I J, Antonacci C L, Chaudhary C, et al. Early clinical outcomes of the prone transpsoas lumbar interbody fusion technique[J]. International Journal Of Spine Surgery, 2023, 17(1): 112–121. DOI:10.14444/8390.

[33] Wangaryattawanich P, Kale H A, Kanter A S, et al. Lateral lumbar interbody fusion: review of surgical technique and postoperative multimodality imaging findings [J]. American Journal Of Roentgenology, 2021, 217(2): 480–494. DOI:10.2214/AJR.20.24074.

[34] Hijji F Y, Narain A S, Bohl D D, et al. Lateral lumbar interbody fusion: a systematic review of complication rates[J]. Spine Journal, 2017, 17(10): 1412–1419. DOI:10.1016/j.spinee.2017.04.022.

[35] Phan K, Maharaj M, Assem Y, et al. Review of early clinical results and complications associated with oblique lumbar interbody fusion (olif)[J]. Journal of Clinical Neuroscience, 2016, 31: 23–29. DOI:10.1016/j.jocn.2016.02.030.

[36] Sardhara J, Singh S, Mehrotra A, et al. Neuro-navigation assisted pre-psoas minimally invasive oblique lumbar interbody fusion (mi-olif): new roads and impediments[J]. NEUROLOGY INDIA, 2019, 67(3): 803–812. DOI:10.4103/0028-3886.263262.

[37] Li H-M, Zhang R-J, Shen C-L. Differences in radiographic and clinical outcomes of oblique lateral interbody fusion and lateral lumbar interbody fusion for degenerative lumbar disease: a meta-analysis[J]. Bmc Musculoskeletal Disorders, 2019, 20(1): 582. DOI:10.1186/s12891-019-2972-7.

[38] Woods K R M, Billys J B, Hynes R A. Technical description of oblique lateral interbody fusion at l1-l5 (olif25) and at l5-s1 (olif51) and evaluation of complication and fusion rates[J]. Spine Journal, 2017, 17(4): 545–553. DOI:10.1016/j.spinee.2016.10.026.

[39] Xu Q, Lu Z, Chen P, et al. Acceptable fusion rate of single-level olif using pure allograft combined with posterior instrumentation through the wiltse approach: a 2-year follow-up study[J]. Orthopaedic Surgery, 2023, 15(3): 801–809. DOI:10.1111/os.13657.

[40] Abe K, Orita S, Mannoji C, et al. Perioperative complications in 155 patients who underwent oblique lateral interbody fusion surgery perspectives and indications from a retrospective, multicenter survey[J]. Spine, 2017, 42(1): 55–62. DOI:10.1097/BRS.0000000000001650.

[41] Laratta J L, Vivace B J, Lopez-Pena M, et al. 3D-printed titanium cages without bone graft outperform peek cages with autograft in an animal model[J]. Spine Journal, 2022, 22(6): 1016–1027. DOI:10.1016/j.spinee.2021.12.004.

[42] Choi S, Kwon J, Suk K, et al. The clinical use of osteobiologic and metallic biomaterials in orthopedic surgery: the present and the future[J]. Materials, 2023, 16(10): 3633. DOI: 10.3390/ ma16103633.

[43] Johansson M L, Shah F A A, Eeg-Olofsson M, et al. Long-term osseointegration of laser-ablated hearing implants in sheep cranial bone[J]. Frontiers in Surgery, 2022, 9: 885964. DOI:10. 3389/fsurg.2022.885964.

[44] Patel H A, Wellington I J, Lubonja K, et al. Current trends in recombinant human bone morphogenetic protein 2 (rhbmp2) usage for spinal fusion surgery[J]. Medicina-Lithuania, 2023, 59(5): 878. DOI:10.3390/medicina59050878.

[45] Manabe H, Sakai T, Morimoto M, et al. Radiological outcomes of posterior lumbar interbody fusion using a titanium-coated peek cage [J]. Journal of Medical Investigation, 2019, 66(1–2): 119–122.

[46] Kotani Y, Koike Y, Ikeura A, et al. Clinical and radiologic comparison of anterior-posterior single- position lateral surgery versus mis-tlif for degenerative lumbar spondylolisthesis [J]. Journal of Orthopaedic Science, 2021, 26(6): 992–998. DOI:10.1016/j.jos.2020.10.013.

[47] Shen H, Zhu J, Huang C, et al. Effect of interbody implants on the biomechanical behavior of lateral lumbar interbody fusion: a finite element study [J]. Journal of Functional Biomaterials, 2023, 14(2): 113. DOI:10.3390/jfb14020113.

[48] Wu H, Shan Z, Zhao F, et al. Poor bone quality, multilevel surgery, and narrow and tall cages are associated with intraoperative endplate injuries and late-onset cage subsidence in lateral lumbar interbody fusion: a systematic review [J]. Clinical Orthopaedics and Related Research, 2022, 480(1): 163–188. DOI:10.1097/CORR.0000000000001915.

[49] Sato K, Funayama T, Noguchi H, et al. Efficacy of platelet-rich plasma impregnation for unidirectional porous beta-tricalcium phosphate in lateral lumbar interbody fusion: study protocol for a prospective controlled trial [J]. Trials, 2022, 23(1): 908. DOI:10.1186/s13063-022-06857-x.

[50] Zheng W-D, Ming J-J, Chang W-L. The impact of collagen sponge composite bone marrow mesenchymal stem cells (bmscs) in inducing interbody fusion[J]. European Review for Medical And Pharmacological Sciences, 2018, 22(18): 5822–5827.