Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2023, 4(10); doi: 10.25236/AJMHS.2023.041004.

Research advances of mitochondrial autophagy in renal diseases


Xiao Han1, Qi Wang1, Yong Feng2, Liyaxing Xu3, Anping Han4, Hongbao Liu5

Corresponding Author:
Xiao Han

1Shaanxi University of Chinese Medicine, Xianyang, China

2Xi 'an Electric Power Central Hospital, Xi'an, China

3Xi 'an Medical University, Xi'an, China

4Han zhong Railway Central Hospital, Hanzhong, China

5The Second Hospital Affiliated to Air Force Medical University, Xi'an, China


Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), are increasing in incidence and prevalence, with poor prognosis and high cost, which is a global concern[1]. Mitochondrial damage and dysfunction are involved in the development of renal diseases, and the disorder of mitochondrial homeostasis may lead to microvascular system damage, inflammation[2], fibrosis and renal failure. Recent studies have shown that mitochondrial autophagy, as an important part of maintaining mitochondrial homeostasis, can promote the clearance of diseased mitochondria and the regeneration of healthy mitochondria[3]. Therefore, this paper reviews the regulation mechanism and characteristics of mitochondrial autophagy in renal diseases, and provides new ideas and theoretical basis for the prevention and treatment of renal diseases.


Autophagy, Mitophagy, kidney, renal disease

Cite This Paper

Xiao Han, Qi Wang, Yong Feng, Liyaxing Xu, Anping Han, Hongbao Liu. Research advances of mitochondrial autophagy in renal diseases. Academic Journal of Medicine & Health Sciences (2023) Vol. 4, Issue 10: 31-37. https://doi.org/10.25236/AJMHS.2023.041004.


[1] Duann P, Lin P H. Mitochondria Damage and Kidney Disease [J]. Adv Exp Med Biol, 2017, 982: 529-551.

[2] Takahashi A, Kimura T, Takabatake Y, et al. Autophagy guards against cisplatin-induced acute kidney injury [J]. Am J Pathol, 2012, 180(2): 517-525.

[3] Levey A S, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification [J]. Ann Intern Med, 2003, 139(2): 137-147.

[4] Eckardt K U, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden [J]. Lancet, 2013, 382(9887): 158-169.

[5] Ratliff B B, Abdulmahdi W, Pawar R, et al. Oxidant Mechanisms in Renal Injury and Disease [J]. Antioxid Redox Signal, 2016, 25(3): 119-146.

[6] Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development [J]. Trends Cell Biol, 2022, 32(10): 841-853.

[7] Hoenig M P, Zeidel M L. Homeostasis, the milieu intérieur, and the wisdom of the nephron [J]. Clin J Am Soc Nephrol, 2014, 9(7): 1272-1281.

[8] Kimura T, Isaka Y, Yoshimori T. Autophagy and kidney inflammation [J]. Autophagy, 2017, 13(6): 997-1003.

[9] Tang C, Livingston M J, Liu Z, et al. Autophagy in kidney homeostasis and disease [J]. Nat Rev Nephrol, 2020, 16(9): 489-508.

[10] Harris J, Deen N, Zamani S, et al. Mitophagy and the release of inflammatory cytokines [J]. Mitochondrion, 2018, 41: 2-8.

[11] De Lavera I, Pavon A D, Paz M V, et al. The Connections Among Autophagy, Inflammasome and Mitochondria [J]. Curr Drug Targets, 2017, 18(9): 1030-1038.

[12] Shi R, Guberman M, Kirshenbaum L A. Mitochondrial quality control: The role of mitophagy in aging [J]. Trends Cardiovasc Med, 2018, 28(4): 246-260.

[13] Yang X, Zhang R, Nakahira K, et al. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy [J]. Annu Rev Nutr, 2019, 39: 201-226.

[14] Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury [J]. Autophagy, 2023, 19(2): 401-414.

[15] Villa E, Marchetti S, Ricci J E. No Parkin Zone: Mitophagy without Parkin [J]. Trends Cell Biol, 2018, 28(11): 882-895.

[16] Takatori S, Ito G, Iwatsubo T. Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1 [J]. Neurosci Lett, 2008, 430(1): 13-17.

[17] Tang C, Cai J, Yin X M, et al. Mitochondrial quality control in kidney injury and repair [J]. Nat Rev Nephrol, 2021, 17(5): 299-318.

[18] Zheng H, Zhu H, Liu X, et al. Mitophagy in Diabetic Cardiomyopathy: Roles and Mechanisms [J]. Front Cell Dev Biol, 2021, 9: 750382.

[19] Dagar N, Kale A, Steiger S, et al. Receptor-mediated mitophagy: An emerging therapeutic target in acute kidney injury [J]. Mitochondrion, 2022, 66: 82-91.

[20] Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation [J]. Redox Biol, 2019, 26: 101254.

[21] Liu D, Liu Y, Zheng X, et al. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia-reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway [J]. Cell Death Dis, 2021, 12(2): 191.

[22] Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury [J]. Autophagy, 2018, 14(5): 880-897.

[23] Morigi M, Perico L, Rota C, et al. Sirtuin 3-dependent mitochondrial dynamic improvements protect against acute kidney injury [J]. J Clin Invest, 2015, 125(2): 715-726.

[24] Wang Y, Tang C, Cai J, et al. PINK1/Parkin-mediated mitophagy is activated in cisplatin nephrotoxicity to protect against kidney injury [J]. Cell Death Dis, 2018, 9(11): 1113.

[25] Livingston M J, Wang J, Zhou J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys [J]. Autophagy, 2019, 15(12): 2142-2162.

[26] Hsiao H W, Tsai K L, Wang L F, et al. The decline of autophagy contributes to proximal tubular dysfunction during sepsis [J]. Shock, 2012, 37(3): 289-296.

[27] Wang Y, Zhu J, Liu Z, et al. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury [J]. Redox Biol, 2021, 38: 101767.

[28] Sliter D A, Martinez J, Hao L, et al. Parkin and PINK1 mitigate STING-induced inflammation [J]. Nature, 2018, 561(7722): 258-262.

[29] Nguyen T N, Padman B S, Lazarou M. Deciphering the Molecular Signals of PINK1/Parkin Mitophagy [J]. Trends Cell Biol, 2016, 26(10): 733-744.

[30] Lash L H. Mitochondrial Glutathione in Diabetic Nephropathy [J]. J Clin Med, 2015, 4(7): 1428-1447.

[31] Block K, Gorin Y, Abboud H E. Subcellular localization of Nox4 and regulation in diabetes [J]. Proc Natl Acad Sci U S A, 2009, 106(34): 14385-14390.

[32] Savu O, Sunkari V G, Botusan I R, et al. Stability of mitochondrial DNA against reactive oxygen species (ROS) generated in diabetes [J]. Diabetes Metab Res Rev, 2011, 27(5): 470-479.

[33] Sheng J, Li H, Dai Q, et al. NR4A1 Promotes Diabetic Nephropathy by Activating Mff-Mediated Mitochondrial Fission and Suppressing Parkin-Mediated Mitophagy [J]. Cell Physiol Biochem, 2018, 48(4): 1675-1693.

[34] Higgins G C, Coughlan M T. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy? [J]. Br J Pharmacol, 2014, 171(8): 1917-1942.

[35] Mallipattu S K, He J C. The podocyte as a direct target for treatment of glomerular disease? [J]. Am J Physiol Renal Physiol, 2016, 311(1): F46-51.

[36] Mallipattu S K, Horne S J, D'agati V, et al. Krüppel-like factor 6 regulates mitochondrial function in the kidney [J]. J Clin Invest, 2015, 125(3): 1347-1361.

[37] Zwacka R M, Reuter A, Pfaff E, et al. The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species [J]. Embo j, 1994, 13(21): 5129-5134.

[38] Casalena G, Krick S, Daehn I, et al. Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro [J]. Am J Physiol Renal Physiol, 2014, 306(11): F1372-1380.

[39] Bhatia D, Chung K P, Nakahira K, et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis [J]. JCI Insight, 2019, 4(23).

[40] Tan J, Xie Q, Song S, et al. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells [J]. Med Sci Monit, 2018, 24: 1258-1267.

[41] Yaniv G, Twig G, Shor D B, et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: a diversity of 180 different antibodies found in SLE patients [J]. Autoimmun Rev, 2015, 14(1): 75-79.

[42] Pierdominici M, Vomero M, Barbati C, et al. Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus [J]. Faseb J, 2012, 26(4): 1400-1412.

[43] Caza T N, Fernandez D R, Talaber G, et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE [J]. Ann Rheum Dis, 2014, 73(10): 1888-1897.

[44] Ibrahim S A, Afify A Y, Fawzy I O, et al. The curious case of miR-155 in SLE [J]. Expert Rev Mol Med, 2021, 23: e11.

[45] Leng R X, Pan H F, Qin W Z, et al. Role of microRNA-155 in autoimmunity [J]. Cytokine Growth Factor Rev, 2011, 22(3): 141-147.

[46] Bergmann C, Guay-Woodford L M, Harris P C, et al. Polycystic kidney disease [J]. Nat Rev Dis Primers, 2018, 4(1): 50.

[47] Xu Y, Wan W. Acetylation in the regulation of autophagy [J]. Autophagy, 2023, 19(2): 379-387.

[48] Choi M E. Autophagy in Kidney Disease [J]. Annu Rev Physiol, 2020, 82: 297-322.

[49] Belibi F, Zafar I, Ravichandran K, et al. Hypoxia-inducible factor-1α (HIF-1α) and autophagy in polycystic kidney disease (PKD) [J]. Am J Physiol Renal Physiol, 2011, 300(5): F1235-1243.

[50] Linehan W M, Ricketts C J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications [J]. Nat Rev Urol, 2019, 16(9): 539-552.

[51] Wang B, Yin X, Gan W, et al. PRCC-TFE3 fusion-mediated PRKN/parkin-dependent mitophagy promotes cell survival and proliferation in PRCC-TFE3 translocation renal cell carcinoma [J]. Autophagy, 2021, 17(9): 2475-2493.

[52] Kolla L, Heo D S, Rosenberg D P, et al. High content screen for identifying small-molecule LC3B-localization modulators in a renal cancer cell line [J]. Sci Data, 2018, 5: 180116.

[53] Lampert M A, Orogo A M, Najor R H, et al. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation [J]. Autophagy, 2019, 15(7): 1182-1198.