Welcome to Francis Academic Press

Academic Journal of Agriculture & Life Sciences, 2023, 4(1); doi: 10.25236/AJALS.2023.040107.

Development and Application of Hypervariable Chloroplast Molecular Markers in Bambusoideae

Author(s)

Jing Wang, Yue Feng, Jing Bi, Chuanyao Huang, Zhenghao Wang, Yongmei Chen

Corresponding Author:
Yongmei Chen
Affiliation(s)

College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China

Abstract

Molecular markers of plant hypervariable chloroplast genomes are important genetic markers and have become an important auxiliary means for species identification and phylogenetic analysis. Bambusoideae species are hard to be identified based on external morphology. Therefore, based on the comparative analysis of the whole genome sequences of chloroplasts of five published Bambusoideae species, the hypervariable chloroplast molecular markers of bamboos were selected and developed, and the genetic diversity and phylogeny analyses of nine Bambusoideae species based on five chloroplast molecular markers were performed. The five markers are rbcL, matK, trnH-psbA, trnL-trnF, and trnG-trnT, with mutations 2 - 40 including indels; the π values of nucleotide diversity are 0.00058-0.03256, and θw values are 0.00097 - 0.02743. The π and θw values of trnG-trnT are the highest, indicating the genetic diversity of trnG-trnT is the highest. Phylogenetic analysis shows that nine Bambusoideae species are clustered into two branches, with Pleioblastus amarus,Pseudosasa japonica and Yushania nana clustered into one branch, and Bambusa blumeana,Dendrocalamus latiflorus,D. minor, Sarocalamus yongdeensis, D. barbatus and D. giganteus clustered into another branch. This study is of great significance for phylogenetic research, species identification and new cultivars development of Bambusoideae.

Keywords

Bambusoideae; Chloroplast; Hypervariable region; Molecular markers

Cite This Paper

Jing Wang, Yue Feng, Jing Bi, Chuanyao Huang, Zhenghao Wang, Yongmei Chen. Development and Application of Hypervariable Chloroplast Molecular Markers in Bambusoideae. Academic Journal of Agriculture & Life Sciences (2023) Vol. 4 Issue 1: 43-53. https://doi.org/10.25236/AJALS.2023.040107.

References

[1] Zhu Z X, Zhang F Y, Song S, et al. Research Advances in Bambuseae Taxonomy. World Forestry Research. Vol. 30 (2017) No. 3, p. 35-40.

[2] Zhou F C. Bamboo resources in the world. Bamboo research. Vol. 1 (1998) , p. 4-10.

[3] Dai X D, Xu C B, Dai Q M. Bamboo resources and research progress. Journal of Shandong Forestry Sicence and Technology. Vol. 1 (2009), p. 107-111.

[4] Bai Q, Yu L X, Yan B. Classification and research progress of bamboo. Journal of Henan Sicence and Technology. (2014) No. 5, p. 188-189.

[5] Triplett J K, Clark L G, Fisher A E, et al. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytologist. Vol. 204 (2014) No. 1, p. 66-73.

[6] Goh W, Chandran S, Franklin D, et al. Multi-gene region phylogenetic analyses suggest reticulate evolution and a clade of Australian origin among paleotropical woody bamboos (Poaceae: Bambusoideae: Bambuseae). Plant systematics and evolution. Vol. 299 (2013) No. 1, p.239-257.

[7] Kelchner S A, Group B P. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Molecular phylogenetics and evolution. Vol. 67 (2013) No. 2, p. 404-413.

[8] Zhang X Z, Zeng C X, Ma P F, et al. Multi-locus plastid phylogenetic biogeography supports the Asian hypothesis of the temperate woody bamboos (Poaceae: Bambusoideae). Molecular Phylogenetics and Evolution. Vol. 96 (2016), p. 118-129.

[9] Shi J Y,Yi T P, Yao J, et al. A New Species of Bashania Keng f et Yi on Western Yunnan,China. Forest Research. Vol. 20 (2007) No. 6, p. 864-866.

[10] Stapleton C M A .New combinations in Sarocalamus for Chinese alpine bamboos (Poaceae: Bambusoideae)[J].Nordic Journal of Botany, 2019, 37(7).DOI:10.1111/njb.02361.

[11] Clark L, Londoño X, Ruiz-Sanchez E. Bamboo taxonomy and habitat. Bamboo: The plant and its uses. (2015), p.1-30.

[12] Clark L G, Oliveira R. Diversity and evolution of the new world bamboos. Proceedings World Bamboo Congress, Mexico. (2018), p. 14-18.

[13] Gong Y, Chen H J, Xu Z E. Polymorphisms of Dwarf 14( D14) Gene in Bambusoideae. Journal of Nuclear Agricultural Sciences. Vol. 32 (2018) No. 1, p. 48-57.

[14] Zhu S, Liu T, Tang Q, et al. Evaluation of bamboo genetic diversity using morphological and SRAP analyses. Russian Journal of Genetics. Vol. 50 (2014), p. 267-273.

[15] Wang Y, Zhan D F, Jia X, et al. Complete chloroplast genome sequence of Aquilaria sinensis (Lour.) Gilg and evolution analysis within the Malvales order. Frontiers in plant science. Vol. 7 (2016), p. 280-293.

[16] Zhou J, Cui Y, Chen X, et al. Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: molecular structures, comparative analysis, and phylogenetic analysis. Molecules. Vol. 23 (2018) No.2, p. 437-452.

[17] Liu J X, Zhou M Y, Yang G Q, et al. ddRAD analyses reveal a credible phylogenetic relationship of the four main genera of Bambusa-Dendrocalamus-Gigantochloa complex (Poaceae: Bambusoideae). Molecular phylogenetics and evolution. Vol. 146 (2020), p. 106758-106810.

[18] Zhou Y, Zhang Y Q, Xing X C, et al. Straight from the plastome: molecular phylogeny and morphological evolution of Fargesia (Bambusoideae: Poaceae). Frontiers in Plant Science. Vol. 10 (2019), p. 981-998.

[19] Wang M Y, Zhang X M, Ding Y. Comparison and Evolutionary Analysis of Chloroplast Genomes in Hemiparasitic Plants of the Santalaceae. Vol. 21 (2023) No.9, p. 2908-2924.

[20] Ma L H, Ning J Q, Wang Y J. Comparative genomics on chloroplasts of Sinopodophyllum hexandrum. Chinese Journal of Biotechnology. Vol. 38 (2022) No.10, p. 3695-3712.

[21] Chong X, Li Y, Yan M, et al. Comparative chloroplast genome analysis of 10 Ilex species and the development of species-specific identification markers. Industrial Crops and Products. Vol. 187 (2022), p. 115408-115421.

[22] Xia C, Wang M, Guan Y, et al. Comparative analysis of the chloroplast genome for Aconitum species: genome structure and phylogenetic relationships. Frontiers in Genetics. Vol. 13 (2022), p. 878182-878201.

[23] Feng C, Xu M, Feng C, et al. The complete chloroplast genome of Primulina and two novel strategies for development of high polymorphic loci for population genetic and phylogenetic studies. BMC Evolutionary Biology. Vol. 17 (2017), p. 1-16.

[24] Song W, Chen Z, He L, et al. Comparative chloroplast genome analysis of wax gourd (Benincasa hispida) with three Benincaseae species, revealing evolutionary dynamic patterns and phylogenetic implications. Genes. Vol. 13 (2022) No. 3, p. 461-479.

[25] Park I, Song J H, Yang S, et al. Comparative analysis of Actaea chloroplast genomes and molecular marker development for the identification of authentic Cimicifugae Rhizoma. Plants. Vol. 9 (2020) No.2, p. 157-171.

[26] Li L B, Liu L, Yuan J L, et al. Feasibility of the Chloroplast 5S rDNA ITS and matK Gene Sequence to the Phylogenetic Relationships in the Genus of Phyllostachys. Molecular Plant Breeding. Vol. 7 (2009) No.1, p. 89-94.

[27] Xu Q, Liang C, Chen J, et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes+. Glob. Ecol. Conserv. Vol. 21 (2020), p. e00787-e00797.

[28] Mayor C, Brudno M, Schwartz J R, et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics. Vol. 16 (2000) No.11, p. 1046-1047.

[29] Dubchak I, Ryaboy D V. VISTA family of computational tools for comparative analysis of DNA sequences and whole genomes. Gene Mapping, Discovery, and Expression: Methods and Protocols. Vol. 338 (2006), p. 69-89.

[30] Lalitha S. Primer premier 5. Biotech Software & Internet Report: The Computer Software Journal for Scient. Vol. 1 (2000) No. 6, p. 270-272.

[31] Fulton T M, Chunwongse J, Tanksley S D. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter. Vol. 13 (1995) ,p. 207-209.

[32] Duan H, Wang W, Zeng Y, et al. The screening and identification of DNA barcode sequences for. Rehmannia. Vol. 9 (2019), p. 17295-17307.

[33] Rozas J. DNA sequence polymorphism analysis using DnaSP. Bioinformatics for DNA sequence analysis. (2009), p. 337-347.

[34] Nei M. Molecular evolutionary genetics[M]. Columbia university press, 1987.

[35] Watterson G. On the number of segregating sites in genetical models without recombination. Theoretical population biology. Vol. 7 (1975) No. 2, p. 256-276.

[36] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. Vol. 123 (1989) No. 3, p. 585-595.

[37] Fu Y X, Li W H. Statistical tests of neutrality of mutations. Genetics. Vol. 133 (1993) No. 3, p. 693-709.

[38] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution. Vol. 33 (2016) No. 7, p. 1870-1874.

[39] Zhang D, Gao F, Jakovlić I, et al. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular ecology resources. Vol. 20 (2020) No. 1, p. 348-355.

[40] Tamura K. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Molecular biology and evolution. Vol. 9 (1992) No. 5, p. 814-825.

[41] Jukes T H, Cantor C R. Evolution of protein molecules. Mammalian protein metabolism. Vol. 3 (1969), p. 21-132.