Welcome to Francis Academic Press

Academic Journal of Agriculture & Life Sciences, 2023, 4(1); doi: 10.25236/AJALS.2023.040108.

Research progress in artificial gene circuit

Author(s)

Zeyue Yu

Corresponding Author:
Zeyue Yu
Affiliation(s)

College of Life Sciences, Qingdao University, Qingdao, Shandong, 266071, China

Abstract

A gene circuit is a genetic device consisting of gene regulatory elements and regulated genes. The basic theory of gene circuits includes the theory of synthetic biology and the regulation of gene expression. Gene circuits consist of logic gate gene circuits, bistable switches, and gene oscillators. The biggest challenge facing artificial gene circuits today is predictability. The behavior of artificial gene circuits within chassis cells may deviate from the predetermined behavior due to chassis-circuit coupling, the complexity of the circuits themselves, and other reasons. Rational design of gene circuits can be achieved by using mathematical modeling tools and computer support. Artificial gene circuits play an important role in chemical production, medical treatment, and life science research. This paper summarizes the knowledge about artificial gene circuits and describes the existing results and future developments in this field.

Keywords

Synthetic Biology, Artificial Gene Circuits

Cite This Paper

Zeyue Yu. Research progress in artificial gene circuit. Academic Journal of Agriculture & Life Sciences (2023) Vol. 4 Issue 1: 54-61. https://doi.org/10.25236/AJALS.2023.040108.

References

[1] XIANG Yanhui, LI Tingting, LOU Chunbo. Advances and challenges in the design principles of artificial genetic circuits[J]. Life Science, 2021, 33(12):1445-1451. DOI:10. 13376/j. cbls/2021162. 

[2] Lee, S., Khalil, A. S. & Wong, W. W. Recent progress of gene circuit designs in immune cell therapies. Cell Systems 13, 864–873 (2022).  

[3] Zhang H, Lin M, Shi H, Ji W, Huang L, Zhang X, Shen S, Gao R, Wu S, Tian C, Yang Z, Zhang G, He S, Wang H, Saw T, Chen Y, Ouyang Q. Programming a Pavlovian-like conditioning circuit in Escherichia coli. Nat Commun. 2014;5:3102. doi: 10. 1038/ncomms4102. PMID: 24434523.

[4] Liu Q, Schumacher J, Wan X, Lou C, Wang B. Orthogonality and Burdens of Heterologous AND Gate Gene Circuits in E. coli. ACS Synth Biol. 2018 Feb 16;7(2):553-564. doi: 10. 1021/acssynbio. 7b00328. Epub 2018 Jan 5. PMID: 29240998; PMCID: PMC5820654. 

[5] Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology, Nat. Commun. 2, 508. 

[6] Zong Y, Zhang HM, Lyu C, Ji X, Hou J, Guo X, Ouyang Q, Lou C. Insulated transcriptional elements enable precise design of genetic circuits. Nat Commun. 2017 Jul 3;8(1):52. doi: 10. 1038/s41467-017-00063-z. PMID: 28674389; PMCID: PMC5495784. 

[7] Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC 4th. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4772-5. doi: 10. 1073/pnas. 1019295108. Epub 2011 Mar 7. PMID: 21383140; PMCID: PMC3064365. 

[8] Lee S, Khalil AS, Wong WW. Recent progress of gene circuit designs in immune cell therapies. Cell Syst. 2022 Nov 16; 13(11):864-873. doi: 10. 1016/j. cels. 2022. 09. 006. PMID: 36395726; PMCID: PMC9681026. 

[9] Peng R, Ba F, Li J, Cao J, Zhang R, Liu WQ, Ren J, Liu Y, Li J, Ling S. Embedding Living Cells with a Mechanically Reinforced and Functionally Programmable Hydrogel Fiber Platform. Adv Mater. 2023 Jul 27:e2305583. doi: 10. 1002/adma. 202305583. Epub ahead of print. PMID: 37498452. 

[10] Wu Y, Chen T, Liu Y, Tian R, Lv X, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 2020 Jan 24; 48(2):996-1009. doi: 10. 1093/nar/gkz1123. PMID: 31799627; PMCID: PMC6954435. 

[11] Serganov A, Nudler E. A decade of riboswitches. Cell. 2013 Jan 17; 152(1-2):17-24. doi: 10. 1016/j. cell. 2012. 12. 024. PMID: 23332744; PMCID: PMC4215550. 

[12] JACOB F, MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun; 3:318-56. doi: 10. 1016/s0022-2836(61)80072-7. PMID: 13718526. 

[13] Ogawa A, Maeda M. An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem. 2008 Jan 25;9(2):206-9. doi: 10. 1002/cbic. 200700478. PMID: 18098257. 

[14] ZHAO Guoping. Synthetic biology:Opening a new era of "convergent" research in life sciences[J]. Proceedings of the Chinese Academy of Sciences, 2018, 33(11):1135-1149. DOI:10. 16418/j. issn. 1000-3045. 2018. 11. 001. 

[15] Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A. (2012) Genetic programs constructed from layered logic gates in single cells, Nature 491, 249-253. 

[16] Şimşek, E., Yao, Y., Lee, D. & You, L. Toward predictive engineering of gene circuits. Trends in Biotechnology 41, 760–768 (2023). 

[17] CARBONELL-BALLESTERO M, GARCIA-RAMALLO E, MONTAÑEZ R, et al. Dealing with the genetic load in bacterial synthetic biology circuits: convergences with the Ohm's law [J]. Nucleic Acids Research, 2016, 44(1): 496-507. 

[18] Cookson NA, Mather WH, Danino T, et al. Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol, 2011, 7: 561. 

[19] Sleight SC, Sauro HM. Visualization of evolutionary stability dynamics and competitive fitness of Escherichia coli engineered with randomized multigene circuits. ACS Synth Biol. 2013 Sep 20; 2(9):519-28. doi: 10. 1021/sb400055h. Epub 2013 Sep 4. PMID: 24004180. 

[20] Rhodius, V. A., Segall‐Shapiro, T. H., Sharon, B. D., Ghodasara, A., Orlova, E., Tabakh, H., Burkhardt, D. H., Clancy, K., Peterson, T. C., Gross, C. A., and Voigt, C. A. (2013) Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters, Mol. Syst. Biol. 9, 702. 

[21] Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015 May;12(5):415-8. doi: 10. 1038/nmeth. 3339. Epub 2015 Apr 6. PMID: 25849635. 

[22] Hossain, A., Lopez, E., Halper, S. M. et al. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat Biotechnol 38, 1466–1475 (2020). https://doi. org/ 10. 1038/ s41587-020-0584-2. 

[23] Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature. 2000 Jun 1; 405(6786):590-3. doi: 10. 1038/35014651. PMID: 10850721. 

[24] Li Panpan. Synthesizing gene circuits based on modular design of biological components [D]. Shaanxi Normal University, 2017. 

[25] Chen Y, Zhang S, Young EM, Jones TS, Densmore D, Voigt CA. Genetic circuit design automation for yeast. Nat Microbiol. 2020 Nov;5(11):1349-1360. doi: 10. 1038/s41564-020-0757-2. Epub 2020 Aug 3. PMID: 32747797.