Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(11); doi: 10.25236/FMSR.2023.051108.

The research progress of alanine racemase

Author(s)

Rui Li1,2, Zehui Chen1,2

Corresponding Author:
Zehui Chen
Affiliation(s)

1Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563099, China

2School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, 563099, China

Abstract

Alanine Racemase (ALR) is a unique bacterial enzyme that racemises L-alanine to D-alanine in bacteria and plays a crucial role in the biosynthesis of bacterial peptidoglycan. In this paper, the structure, function and application of alanine racemase are described to provide a theoretical basis for the in-depth study of bacterial alanine metabolism and the development of related enzyme inhibitors.

Keywords

bacteria; alanine racemase; physiological function

Cite This Paper

Rui Li, Zehui Chen. The research progress of alanine racemase. Frontiers in Medical Science Research (2023) Vol. 5, Issue 11: 51-57. https://doi.org/10.25236/FMSR.2023.051108.

References

[1] Neuhaus FC, Baddiley J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev. 2003. 67(4): 686-723.

[2] Dodds D, Bose JL, Deng MD, et al. Controlling the Growth of the Skin Commensal Staphylococcus epidermidis Using d-Alanine Auxotrophy. mSphere. 2020. 5(3).

[3] Kawakami R, Ohshida T, Sakuraba H, Ohshima T. A Novel PLP-Dependent Alanine/Serine Racemase From the Hyperthermophilic Archaeon Pyrococcus horikoshii OT-3. Front Microbiol. 2018. 9: 1481.

[4] Azam MA, Jayaram U. Inhibitors of alanine racemase enzyme: a review. J Enzyme Inhib Med Chem. 2016. 31(4): 517-526.

[5] Walsh CT. Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem. 1989. 264(5): 2393-2396.

[6] Lambert MP, Neuhaus FC. Factors affecting the level of alanine racemase in Escherichia coli. J Bacteriol. 1972. 109(3): 1156-1161.

[7] Inagaki K, Tanizawa K, Badet B, Walsh CT, Tanaka H, Soda K. Thermostable alanine racemase from Bacillus stearothermophilus: molecular cloning of the gene, enzyme purification, and characterization. Biochemistry. 1986. 25(11): 3268-3274.

[8] Ono K, Yanagida K, Oikawa T, Ogawa T, Soda K. Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry. 2006. 67(9): 856-860.

[9] WOOD WA, GUNSALUS IC. D-Alanine formation; a racemase in Streptococcus faecalis. J Biol Chem. 1951. 190(1): 403-416.

[10] Chacon O, Bermudez LE, Zinniel DK, et al. Impairment of D-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology (Reading). 2009. 155(Pt 5): 1440-1450.

[11] He W, Li C, Lu CD. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol. 2011. 193(9): 2107-2115.

[12] Hols P, Defrenne C, Ferain T, Derzelle S, Delplace B, Delcour J. The alanine racemase gene is essential for growth of Lactobacillus plantarum. J Bacteriol. 1997. 179(11): 3804-3807.

[13] Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G. The alanine racemase gene alr is an alternative to antibiotic resistance genes in cloning systems for industrial Corynebacterium glutamicum strains. J Biotechnol. 2002. 99(1): 79-91.

[14] Ju J, Xu S, Furukawa Y, et al. Correlation between catalytic activity and monomer-dimer equilibrium of bacterial alanine racemases. J Biochem. 2011. 149(1): 83-89.

[15] Sun X, He G, Wang X, Xu S, Ju J, Xu X. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection. PLoS One. 2015. 10(7): e0133516.

[16] Scaletti ER, Luckner SR, Krause KL. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50). Acta Crystallogr D Biol Crystallogr. 2012. 68(Pt 1): 82-92.

[17] Liu D, Zhang L, Xue W, Wang Y, Ju J, Zhao B. Knockout of the alanine racemase gene in Aeromonas hydrophila HBNUAh01 results in cell wall damage and enhanced membrane permeability. FEMS Microbiol Lett. 2015. 362(13): fnv089.

[18] Awasthy D, Bharath S, Subbulakshmi V, Sharma U. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology (Reading). 2012. 158(Pt 2): 319-327.

[19] Yasuda Y, Kanda K, Nishioka S, et al. Regulation of L-alanine-initiated germination ofBacillus subtilis spores by alanine racemase. Amino Acids. 1993. 4(1-2): 89-99.

[20] Liang L, Gai Y, Hu K, Liu G. The gerA operon is required for spore germination in Bacillus thuringiensis. Wei Sheng Wu Xue Bao= Acta Microbiologica Sinica,. 2008. 48(3): 281-286.

[21] Chesnokova ON, McPherson SA, Steichen CT, Turnbough CL Jr. The spore-specific alanine racemase of Bacillus anthracis and its role in suppressing germination during spore development. J Bacteriol. 2009. 191(4): 1303-1310.

[22] Liu S, Wei Y, Zhou X, et al. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans. Sci Rep. 2018. 8(1): 5984.

[23] Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol. 2011. 193(20): 5616-5622.

[24] Yoshikawa N, Yokoyama M. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus. J Pharm Biomed Anal. 2015. 116: 53-58.

[25] Lim YH, Yokoigawa K, Esaki N, Soda K. A new amino acid racemase with threonine alpha-epimerase activity from Pseudomonas putida: purification and characterization. J Bacteriol. 1993. 175(13): 4213-4217.

[26] Lee Y, Mootien S, Shoen C, et al. Inhibition of mycobacterial alanine racemase activity and growth by thiadiazolidinones. Biochem Pharmacol. 2013. 86(2): 222-230.

[27] Yoshikawa N, Ashida W, Hamase K, Abe H. HPLC determination of the distribution of D-amino acids and effects of ecdysis on alanine racemase activity in kuruma prawn Marsupenaeus japonicus. J Chromatogr B Analyt Technol Biomed Life Sci. 2011. 879(29): 3283-3288.

[28] Anthony KG, Strych U, Yeung KR, et al. New classes of alanine racemase inhibitors identified by high-throughput screening show antimicrobial activity against Mycobacterium tuberculosis. PLoS One. 2011. 6(5): e20374.

[29] Wang Y, Yang C, Xue W, et al. Selection and characterization of alanine racemase inhibitors against Aeromonas hydrophila. BMC Microbiol. 2017. 17(1): 122.

[30] Ciustea M, Mootien S, Rosato AE, et al. Thiadiazolidinones: a new class of alanine racemase inhibitors with antimicrobial activity against methicillin-resistant Staphylococcus aureus. Biochem Pharmacol. 2012. 83(3): 368-377.

[31] Yokoigawa K, Tomioka R, Okubo Y, Kawai H. An alanine racemase gene as a new index for detecting Escherichia coli in foods. Biosci Biotechnol Biochem. 1996. 60(11): 1799-1804.

[32] Chen J, Jin Z, Gai Y, Sun J, Zhang D. A food-grade expression system for d-psicose 3-epimerase production in Bacillus subtilis using an alanine racemase-encoding selection marker. Bioresour Bioprocess. 2017. 4(1): 9.

[33] McKevitt MT, Bryant KM, Shakir SM, et al. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections. Infect Immun. 2007. 75(12): 5726-5734.

[34] Omotade TO, Heffron JD, Klimko CP, et al. D-cycloserine or similar physiochemical compounds may be uniquely suited for use in Bacillus anthracis spore decontamination strategies. J Appl Microbiol. 2013. 115(6): 1343-1356.

[35] Milligan DL, Tran SL, Strych U, Cook GM, Krause KL. The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of D-alanine. J Bacteriol. 2007. 189(22): 8381-8386.

[36] A PILOT study of cycloserine toxicity; a United States Public Health Service Cooperative Clinical Investigation. Am Rev Tuberc. 1956. 74(2 Part 1): 196-209.

[37] Nakatani Y, Opel-Reading HK, Merker M, et al. Role of Alanine Racemase Mutations in Mycobacterium tuberculosis d-Cycloserine Resistance. Antimicrob Agents Chemother. 2017. 61(12).