Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2024, 6(2); doi: 10.25236/FMSR.2024.060217.

Research Progress of Ferroptosis in Acute Kidney Injury

Author(s)

Dan Liang1, Kexin Han2, Hongbao Liu3

Corresponding Author:
Dan Liang
Affiliation(s)

1Xi’an Medical University, Xi’an, China

2Shaanxi University of Chinese Medicine, Xianyang, China

3The Second Hospital Affiliated to Air Force Medical University, Xi'an, China

Abstract

Acute kidney injury (AKI) is an acute disease with high incidence and mortality. It is characterized by rapid deterioration of renal function and further accumulation of metabolic waste and toxins, leading to complications and dysfunction in other organs. Multiple pathogenic factors, such as rhabdomyolysis, infection, nephrotoxic drugs, and ischemia-reperfusion injury, contribute to the development and development of AKI. However, the specific mechanism is still unclear. Ferroptosis is a non-apoptotic cell death mechanism that is iron-dependent and is thought to be a process of iron accumulation and enhanced lipid peroxidation. Various studies suggest that ferroptosis plays an important role in the development of AKI. This review summarizes the potential role of ferroptosis in the pathogenesis and treatment of acute kidney injury.

Keywords

acute kidney injury; ferroptosis; mechanism; treat

Cite This Paper

Dan Liang, Kexin Han, Hongbao Liu. Research Progress of Ferroptosis in Acute Kidney Injury. Frontiers in Medical Science Research (2024), Vol. 6, Issue 2: 112-118. https://doi.org/10.25236/FMSR.2024.060217.

References

[1] Wang Y, Tao Y. Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res. 2015;2015:174164. doi:10.1155/2015/174164

[2] Susantitaphong, P., Cruz, D. N., Cerda, J., Abulfaraj, M., Alqahtani, F.,Koulouridis, I.,et al. (2013). World incidence of AKI: A meta-analysis. Clin.J. Am. Soc. Nephrol. 8 (9), 1482–1493. doi:10.2215/CJN.00710113.

[3] International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): A human rights case for nephrology. Lancet 385 (9987), 2616–2643.doi:10.1016/ S0140-6736(15)60126-X.

[4] Hu, Zhaoxin, et al. “Emerging Role of Ferroptosis in Acute Kidney Injury.” Oxidative medicine and cellular longevity vol. 2019 8010614. 31 Oct. 2019, doi:10.1155/2019/8010614

[5] Dolma, Sonam, et al. “Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.” Cancer cell vol. 3, 3 (2003): 285-96. doi:10.1016/s1535-6108(03)00050-3

[6] Yang, Wan Seok, and Brent R Stockwell. “Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.” Chemistry & biology vol. 15,3 (2008): 234-45. doi:10.1016/j.chembiol.2008.02.010

[7] Dixon, Scott J, et al. “Ferroptosis: an iron-dependent form of nonapoptotic cell death.” Cell vol. 149, 5 (2012): 1060-72. doi:10.1016/j.cell.2012.03.042

[8] Wang, Hai, et al. “Mitochondria regulation in ferroptosis.” European Journal of Cell Biology vol. 99,1 (2020): 151058. doi:10.1016/j.ejcb.2019.151058.

[9] Tang, Daolin, et al. “Ferroptosis: molecular mechanisms and health implications.” Cell research vol. 31,2 (2021): 107-125. doi:10.1038/s41422-020-00441-1

[10] van Swelm, Rachel P L, et al. “The multifaceted role of iron in renal health and disease.” Nature reviews. Nephrology vol. 16,2 (2020): 77-98. doi:10.1038/s41581-019-0197-5

[11] Cabantchik, Zvi Ioav. “Labile iron in cells and body fluids: physiology, pathology, and pharmacology.”Frontiers in pharmacology vol. 5 45. 13 Mar. 2014, doi:10.3389/fphar.2014.00045

[12] Anderson, Gregory J, and David M Frazer. “Current understanding of iron homeostasis.” The American Journal of Clinical Nutrition vol. 106, Suppl 6 (2017): 1559S-1566S. doi:10.3945/ajcn. 117.155804

[13] Dixon, Scott J, and Brent R Stockwell. “The role of iron and reactive oxygen species in cell death.” Nature Chemical Biology vol. 10,1 (2014): 9-17. doi:10.1038/nchembio.1416

[14] Latunde-Dada, Gladys O. “Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy.” Biochimica et biophysica acta. General Subjects vol. 1861,8 (2017): 1893-1900. doi:10.1016/j.bbagen. 2017.05.019

[15] Yang, Wan Seok, et al. “Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.” Proceedings of the National Academy of Sciences of the United States of America vol. 113, 34 (2016): E4966-75. doi:10.1073/pnas.1603244113

[16] Doll, Sebastian, et al. “ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.” Nature Chemical Biology vol. 13,1 (2017): 91-98. doi:10.1038/nchembio.2239

[17] Shimbara-Matsubayashi, Satoko, et al. “Analysis on the Substrate Specificity of Recombinant Human Acyl-CoA Synthetase ACSL4 Variants.” Biological & Pharmaceutical Bulletin vol. 42,5 (2019): 850-855. doi:10.1248/bpb.b19-00085

[18] Stockwell, Brent R et al. “Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease.” Cell vol. 171,2 (2017): 273-285. doi:10.1016/j.cell.2017.09.021

[19] Ma, Deliang, et al. “Inhibition of Ferroptosis Attenuates Acute Kidney Injury in Rats with Severe Acute Pancreatitis.” Digestive diseases and sciences vol. 66,2 (2021): 483-492. doi:10.1007/s10620-020-06225-2

[20] Belavgeni, Alexia et al. “Ferroptosis and Necroptosis in the Kidney.” Cell chemical biology vol. 27,4 (2020): 448-462. doi:10.1016/j.chembiol.2020.03.016

[21] Li, Jie, et al. “Ferroptosis: past, present and future.” Cell death & disease vol. 11,2 88. 3 Feb. 2020, doi:10.1038/s41419-020-2298-2

[22] Latunde-Dada, Gladys O. “Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy.” Biochimica et biophysica acta. General Subjects vol. 1861,8 (2017): 1893-1900. doi:10.1016/j.bbagen. 2017.05.019

[23] Ursini, Fulvio, and Matilde Maiorino. “Lipid peroxidation and ferroptosis: The role of GSH and GPx4.” Free radical biology & medicine vol. 152 (2020): 175-185. doi:10.1016/j.freeradbiomed. 2020.02. 027

[24] Jiang, Le et al. “Ferroptosis as a p53-mediated activity during tumor suppression.” Nature vol. 520, 7545 (2015): 57-62. doi:10.1038/nature14344

[25] Chu, Bo et al. “ALOX12 is required for p53-mediated tumor suppression through a distinct ferroptosis pathway.” Nature cell biology vol. 21,5 (2019): 579-591. doi:10.1038/s41556-019-0305-6

[26] Xie, Yangchun, et al. “The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity.” Cell Reports vol. 20,7 (2017): 1692-1704. doi:10.1016/j.celrep.2017.07.055

[27] Brumback, R A. et al. “Rhabdomyolysis following electrical injury.” Seminars in neurology vol. 15,4 (1995): 329-34. doi:10.1055/s-2008-1041040

[28] Patel, Dilip R et al. “Exertional rhabdomyolysis and acute kidney injury.” The Physician and Sports Medicine vol. 37,1 (2009): 71-9. doi:10.3810/psm.2009.04.1685

[29] Gagliano, Massimiliano, et al. “Low-intensity body building exercise-induced rhabdomyolysis: a case report.” Cases Journal vol. 2,1 7. 5 Jan. 2009, doi:10.1186/1757-1626-2-7

[30] Boutaud, Olivier, and L Jackson Roberts 2nd. “Mechanism-based therapeutic approaches to rhabdomyolysis-induced renal failure.” Free radical biology & medicine vol. 51,5 (2011): 1062-7. doi:10.1016/j.freeradbiomed.2010.10.704

[31] Huerta-Alardín, Ana L et al. “Bench-to-bedside review: Rhabdomyolysis -- an overview for clinicians.” Critical care (London, England) vol. 9,2 (2005): 158-69. doi:10.1186/cc2978

[32] Knochel, J P. “Mechanisms of rhabdomyolysis.” Current opinion in rheumatology vol. 5,6 (1993): 725-31. doi:10.1097/00002281-199305060-00006

[33] Vanholder, Raymond, et al. “Rhabdomyolysis.” Journal of the American Society of Nephrology: JASN vol. 11,8 (2000): 1553-1561. doi:10.1681/ASN.V1181553

[34] Ayer, G. et al. “Intrarenal hemodynamics in glycerol-induced myohemoglobinuric acute renal failure in the rat.” Circulation research vol. 29,2 (1971): 128-35. doi:10.1161/01.res.29.2.128

[35] Bosch, Xavier, et al. “Rhabdomyolysis and acute kidney injury.” The New England Journal of Medicine vol. 361,1 (2009): 62-72. doi:10.1056/NEJMra0801327

[36] Fähling, Michael, et al. “Tubular von Hippel-Lindau knockout protects against rhabdomyolysis-induced AKI.” Journal of the American Society of Nephrology: JASN vol. 24,11 (2013): 1806-19. doi:10.1681/ASN.2013030281

[37] Paller, M S. “Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity.” The American Journal of Physiology vol. 255,3 Pt 2 (1988): F539-44. doi:10. 1152/ajprenal. 1988.255.3.F539

[38] Zager, R A, and K Burkhart. “Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport.” Kidney International vol. 51,3 (1997): 728-38. doi:10.1038/ki.1997.104

[39] Guerrero-Hue, Melania, et al. “Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death.” FASEB journal: official publication of the Federation of American Societies for Experimental Biology vol. 33,8 (2019): 8961-8975. doi:10.1096/fj. 201900077R

[40] Zarjou, Abolfazl, et al. “Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury.” The Journal of Clinical Investigation vol. 123,10 (2013): 4423-34. doi:10.1172/JCI67867

[41] Tonnus, Wulf, and Andreas Linkermann. “The in vivo evidence for regulated necrosis.” Immunological Reviews vol. 277,1 (2017): 128-149. doi:10.1111/imr.12551

[42] Linkermann, Andreas, et al. “Synchronized renal tubular cell death involves ferroptosis.” Proceedings of the National Academy of Sciences of the United States of America vol. 111,47 (2014): 16836-41. doi:10.1073/pnas.1415518111

[43] Choi, Nora, et al. “Early intraoperative iron-binding proteins are associated with acute kidney injury after cardiac surgery.” The Journal of Thoracic and Cardiovascular Surgery vol. 157,1 (2019): 287-297.e2. doi:10.1016/j.jtcvs.2018.06.091

[44] Su, Lianjiu, et al. “Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury.” The Journal of Biological Chemistry vol. 294,50 (2019): 19395-19404. doi:10.1074/jbc. RA119.010949

[45] Guo, Lianxia, et al. “Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury.” British Journal of Pharmacology vol. 178,2 (2021): 328-345. doi:10. 1111/bph. 15283

[46] Zarjou, Abolfazl, et al. “Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury.” The Journal of Clinical Investigation vol. 123,10 (2013): 4423-34. doi:10.1172/JCI67867

[47] Lu, Qingmiao, et al. “Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis.” Cell death & disease vol. 11,5 364. 13 May. 2020, doi:10.1038/s41419-020-2539-4

[48] Zhou, Lu et al. “Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting Ferroptosis.” Oxidative medicine and cellular longevity vol. 2022 9947191. 15 Jan. 2022, doi:10.1155/2022/9947191

[49] Kabiraj, Parijat, et al. “The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells.” The Protein Journal vol. 34,5 (2015): 349-58. doi:10.1007/s10930-015-9629-7

[50] Skouta, Rachid, et al. “Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.” Journal of the American Chemical Society vol. 136,12 (2014): 4551-6. doi:10.1021/ja411006a

[51] Tonnus, Wulf, et al. “Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury.” Nature Communications vol. 12,1 4402. 20 Jul. 2021, doi:10.1038/s41467-021-24712-6

[52] Groebler, Ludwig K et al. “Comparing the potential renal protective activity of desferrioxamine B and the novel chelator desferrioxamine B-N-(3-hydroxyadamant-1-yl)carboxamide in a cell model of myoglobinuria.” The Biochemical Journal vol. 435,3 (2011): 669-77. doi:10.1042/BJ20101728

[53] Yu, Haitao, et al. “Ferroptosis, a new form of cell death, and its relationships with tumourous diseases.” Journal of Cellular and Molecular Medicine vol. 21,4 (2017): 648-657. doi:10.1111/jcmm.13008

[54] Zilka, Omkar et al. “On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death.” ACS central science vol. 3,3 (2017): 232-243. doi:10.1021/acscentsci.7b00028

[55] Friedmann Angeli, Jose Pedro, et al. “Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.” Nature cell biology vol. 16, 12 (2014): 1180-91. doi:10.1038/ncb3064

[56] Yang, Wan Seok, et al. “Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.” Proceedings of the National Academy of Sciences of the United States of America vol. 113, 34 (2016): E4966-75. doi:10.1073/pnas.1603244113

[57] Yang, Wan Seok, and Brent R Stockwell. “Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.” Chemistry & biology vol. 15, 3 (2008): 234-45. doi:10.1016/j.chembiol.2008.02.01