Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2024, 5(4); doi: 10.25236/AJMHS.2024.050405.

The Influence of Herbal Tea Ingredients on Hair Condition: A Critical Review

Author(s)

Yaoxu Zhou, Jiating Liang, Chengyong Wang, Rongting Ye

Corresponding Author:
Yaoxu Zhou
Affiliation(s)

Research and Development Department, Dongguan Heyme Biotechnology Co., Dongguan, China

Abstract

Hair loss and graying are prevalent and deeply personal issues affecting millions worldwide, with significant psychological impacts on self-esteem and social perception. In the pursuit of non-invasive, sustainable remedies, a novel herbal tea blend has emerged, promising to address these concerns while offering protection against aging and chronic diseases. This blend, comprising black bean, black rice, sesame, black wolfberry, and polygonatum sibiricum, combines ancient herbal lore with modern nutritional science. Each ingredient targets hair degradation while bolstering overall health. Hair loss and graying, rooted in genetics, hormonal changes, nutritional deficiencies, inflammation, and environmental stressors, are multifaceted phenomena addressed by the blend's antioxidant-rich components. Moreover, the blend's holistic benefits extend to anti-aging, anti-diabetic, and immune-boosting effects. While promising, the blend's efficacy requires further scientific validation. Nonetheless, it represents a compelling natural remedy bridging tradition and modernity, offering hope for improved hair health and overall well-being.

Keywords

traditional Chinese medicine, herbal tea, black bean, black rice, sesame, black wolfberry, polygonatum sibiricum

Cite This Paper

Yaoxu Zhou, Jiating Liang, Chengyong Wang, Rongting Ye. The Influence of Herbal Tea Ingredients on Hair Condition: A Critical Review. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 4: 37-43. https://doi.org/10.25236/AJMHS.2024.050405.

References

[1] A.M. Park, S. Khan, and J. Rawnsley, Hair Biology: Growth and Pigmentation. Facial Plast Surg Clin North Am 26 (2018) 415-424.

[2] S.L. Koch, S.R. Tridico, B.A. Bernard, M.D. Shriver, and N.G. Jablonski, The biology of human hair: A multidisciplinary review. Am J Hum Biol 32 (2020) e23316.

[3] R. Paus, and G. Cotsarelis, The biology of hair follicles. N Engl J Med 341 (1999) 491-7.

[4] E.J. Calabrese, Stimulating hair growth via hormesis: Experimental foundations and clinical implications. Pharmacol Res 152 (2020) 104599.

[5] S. Wu, Y. Yu, C. Liu, X. Zhang, P. Zhu, Y. Peng, X. Yan, Y. Li, P. Hua, Q. Li, S. Wang, and L. Zhang, Single-cell transcriptomics reveals lineage trajectory of human scalp hair follicle and informs mechanisms of hair graying. Cell Discov 8 (2022) 49.

[6] J.A.D. Evangelho, N.L. Vanier, V.Z. Pinto, J.J. Berrios, A.R.G. Dias, and E.D.R. Zavareze, Black bean (Phaseolus vulgaris L.) protein hydrolysates: Physicochemical and functional properties. Food Chem 214 (2017) 460-467.

[7] V.C. Ito, and L.G. Lacerda, Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem 301 (2019) 125304.

[8] P. Wei, F. Zhao, Z. Wang, Q. Wang, X. Chai, G. Hou, and Q. Meng, Sesame (Sesamum indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients 14 (2022).

[9] H.S. Lee, and C.I. Choi, Black Goji Berry (Lycium ruthenicum Murray): A Review of Its Pharmacological Activity. Nutrients 15 (2023).

[10] D. Yun, Y. Yan, and J. Liu, Isolation, structure and biological activity of polysaccharides from the fruits of Lycium ruthenicum Murr: A review. Carbohydr Polym 291 (2022) 119618.

[11] D. Liu, W. Tang, C. Han, and S. Nie, Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front Nutr 9 (2022) 1074671.

[12] S. Wang, G. Li, X. Zhang, Y. Wang, Y. Qiang, B. Wang, J. Zou, J. Niu, and Z. Wang, Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr Polym 291 (2022) 119524.

[13] S. Wang, Y. Kang, F. Qi, and H. Jin, Genetics of hair graying with age. Ageing Res Rev 89 (2023) 101977.

[14] X. Zhang, J. Zhu, J. Zhang, and H. Zhao, Melanocyte stem cells and hair graying. J Cosmet Dermatol 22 (2023) 1720-1723.

[15] D. Fonseca-Hernández, E.D.C. Lugo-Cervantes, A. Escobedo-Reyes, and L. Mojica, Black Bean (Phaseolus vulgaris L.) Polyphenolic Extract Exerts Antioxidant and Antiaging Potential. Molecules 26 (2021).

[16] D.R.T. Sari, A. Paemanee, S. Roytrakul, J.R.K. Cairns, A. Safitri, and F. Fatchiyah, Black rice cultivar from Java Island of Indonesia revealed genomic, proteomic, and anthocyanin nutritional value. Acta Biochim Pol 68 (2021) 55-63.

[17] L. Tai, S. Huang, Z. Zhao, and G. Huang, Chemical composition analysis and antioxidant activity of black rice pigment. Chem Biol Drug Des 97 (2021) 711-720.

[18] M. Namiki, Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 47 (2007) 651-73.

[19] R. Wei, C. Zhu, S. Chen, J. Wang, Z. Zeng, L. Lan, Z. Sun, J. Lei, and Y. Li, Preventive therapeutic effect of Lactobacillus-fermented black wolfberry juice on sodium dextran sulfate-induced ulcerative colitis in mice. J Food Sci 88 (2023) 3102-3118.

[20] X. Cui, S. Wang, H. Cao, H. Guo, Y. Li, F. Xu, M. Zheng, X. Xi, and C. Han, A Review: The Bioactivities and Pharmacological Applications of Polygonatum sibiricum polysaccharides. Molecules 23 (2018).

[21] X. Zhao, S. Patil, A. Qian, and C. Zhao, Bioactive Compounds of Polygonatum sibiricum - Therapeutic Effect and Biological Activity. Endocr Metab Immune Disord Drug Targets 22 (2022) 26-37.

[22] S. Shimoyoshi, D. Takemoto, Y. Ono, Y. Kitagawa, H. Shibata, S. Tomono, K. Unno, and K. Wakabayashi, Sesame Lignans Suppress Age-Related Cognitive Decline in Senescence-Accelerated Mice. Nutrients 11 (2019).

[23] X. Zhang, L. Ni, S. Hu, B. Yue, X. Chen, D. Yuan, T. Wang, and Z. Zhou, Polygonatum sibiricum ameliorated cognitive impairment of naturally aging rats through BDNF-TrkB signaling pathway. J Food Biochem 46 (2022) e14510.

[24] D.M. Winham, S.V. Thompson, M.M. Heer, E.D. Davitt, S.D. Hooper, K.A. Cichy, and S.T. Knoblauch, Black Bean Pasta Meals with Varying Protein Concentrations Reduce Postprandial Glycemia and Insulinemia Similarly Compared to White Bread Control in Adults. Foods 11 (2022).

[25] H. Aalim, D. Wang, and Z. Luo, Black rice (Oryza sativa L.) processing: Evaluation of physicochemical properties, in vitro starch digestibility, and phenolic functions linked to type 2 diabetes. Food Res Int 141 (2021) 109898.

[26] M. Hsieh-Lo, G. Castillo-Herrera, and L. Mojica, Black Bean Anthocyanin-Rich Extract from Supercritical and Pressurized Extraction Increased In Vitro Antidiabetic Potential, While Having Similar Storage Stability. Foods 9 (2020).

[27] L. Mojica, M. Berhow, and E. Gonzalez de Mejia, Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem 229 (2017) 628-639.

[28] M. Sun, D. Li, M. Hua, X. Miao, Y. Su, Y. Chi, Y. Li, R. Sun, H. Niu, and J. Wang, Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats. Food Funct 13 (2022) 7377-7391.

[29] A.A. Ramírez-Coronel, K.A. Ali Alhilali, Y. Basheer Ahmed, S.G. Almalki, and J. Karimian, Effect of sesame (Sesamum indicum L.) consumption on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 37 (2023) 3809-3819.

[30] M.H. Sohouli, N. Haghshenas, Á. Hernández-Ruiz, and F. Shidfar, Consumption of sesame seeds and sesame products has favorable effects on blood glucose levels but not on insulin resistance: A systematic review and meta-analysis of controlled clinical trials. Phytother Res 36 (2022) 1126-1134.

[31] T. Long, Z. Liu, J. Shang, X. Zhou, S. Yu, H. Tian, and Y. Bao, Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int J Biol Macromol 111 (2018) 813-821.

[32] E.W. Jeong, S.Y. Park, Y.S. Yang, Y.J. Baek, D.M. Yun, H.J. Kim, G.W. Go, and H.G. Lee, Black Soybean and Adzuki Bean Extracts Lower Blood Pressure by Modulating the Renin-Angiotensin System in Spontaneously Hypertensive Rats. Foods 10 (2021).

[33] S.L. Yao, Y. Xu, Y.Y. Zhang, and Y.H. Lu, Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct 4 (2013) 1602-8.

[34] H. Khosravi-Boroujeni, E. Nikbakht, E. Natanelov, and S. Khalesi, Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric 97 (2017) 3087-3094.