Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2024, 6(4); doi: 10.25236/IJFM.2024.060407.

The bicarbonate status of the Chinese primary breast cancer patients with different clinicopathology and molecular subtypes

Author(s)

Junhan Feng, Lingquan Kong

Corresponding Author:
Lingquan Kong
Affiliation(s)

Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China

Abstract

This study aimed to investigate the bicarbonate status of Chinese primary breast cancer patients with different clinicopathology and molecular subtypes. A total of 4834 primary breast cancer women and 583 women with breast benign tumors were included from the China Database for Concomitant Disease of Breast Cancer (CDCDBC). Breast cancer patients had significantly lower serum bicarbonate levels compared to women with a benign breast tumor (serum bicarbonate: 24.6±2.50 mmol/L vs 25.2±2.36 mmol/L, P<0.001; the proportion of low bicarbonate status: 25.22% vs 15.69%, P<0.001). Patients with T3/T4-stage had the highest serum bicarbonate levels (T3/T4 vs Tis: Z = -2.944, P < 0.01; T3/T4 vs T1/T2: Z = 4.610, P < 0.001). In the T2 stage, the distribution interval of serum bicarbonate levels in lymph node metastases of ≥ 3, and no lymph node metastases was statistically different (P < 0.01).  There are statistical differences in serum bicarbonate values among Luminal A, Luminal B, HER2 overexpression, and Triple-negative breast cancer (TNBC)(Z = 8.330, P = 0.040). The TNBC patients had lower serum bicarbonate levels compared to that in HER2 overexpression-type patients (serum bicarbonate: P<0.01; the proportion of low bicarbonate status: 26.74% vs 21.80%, P<0.05). The ER (+) patients had lower serum bicarbonate levels compared to the ER (-) patients (serum bicarbonate: 24.68±2.52 mmol/L vs 25.03±2.50 mmol/L, P<0.05; the proportion of low serum bicarbonate: 24.02% vs 20.96%, P <0.01), while the PR (+) patients had lower serum bicarbonate levels compared to the PR (-) patients (serum bicarbonate: 24.55±2.52 mmol/L vs 25.02±2.48 mmol/L, P<0.05; the proportion of low serum bicarbonate: 26.48% vs 19.23%, P <0.01) with T1 stages.Breast cancer patients with different clinicopathology and molecular subtypes have different bicarbonate status and those patients with higher T-stages or larger tumor lesions are more acidic.

Keywords

Breast cancer, Serum bicarbonate, T- stage, Clinicopathological feature

Cite This Paper

Junhan Feng, Lingquan Kong. The bicarbonate status of the Chinese primary breast cancer patients with different clinicopathology and molecular subtypes. International Journal of Frontiers in Medicine (2024), Vol. 6, Issue 4: 51-61. https://doi.org/10.25236/IJFM.2024.060407.

References

[1] Quade, B. N., Parker, M. D., & Occhipinti, R. (2021). The therapeutic importance of acid-base balance. Biochemical pharmacology, 183,114278.https://doi.org/10.1016/j.bcp.2020.114278

[2] Tavares-Valente, D., Sousa, B., Schmitt, F., Baltazar, F., & Queirós, O. (2021). Disruption of pH Dynamics Suppresses Proliferation and Potentiates Doxorubicin Cytotoxicity in Breast Cancer Cells. Pharmaceutics, 13(2), 242. https://doi.org/10.3390/pharmaceutics13020242

[3] Ko, M., Quiñones-Hinojosa, A., & Rao, R. (2020). Emerging links between endosomal pH and cancer. Cancer metastasis reviews, 39(2), 519–534. https://doi.org/10.1007/s10555-020-09870-1

[4] Swietach, P., Vaughan-Jones, R. D., & Harris, A. L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer metastasis reviews, 26(2), 299–310. https://doi.org/10.1007/s 10555-007-9064-0

[5] Martinez-Zaguilan, R., Lynch, R. M., Martinez, G. M., & Gillies, R. J. (1993). Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. The American journal of physiology, 265(4 Pt 1), C1015–C1029. https://doi.org/10.1152/ajpcell.1993.265.4.C1015

[6] Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. The Journal of biological chemistry, 279(26), 26991–27007. https://doi.org/10.1074/jbc.M311838200

[7] Carroll, C. P., Bolland, H., Vancauwenberghe, E.et al (2022). Targeting hypoxia regulated sodium driven bicarbonate transporters reduces triple negative breast cancer metastasis. Neoplasia (New York, N.Y.), 25, 41–52. https://doi.org/10.1016/j.neo.2022.01.003

[8] Martin NK, Robey IF, Gaffney EA, Gillies RJ, Gatenby RA, Maini PK(2012). Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study. British journal of cancer, 106(7), 1280–1287. https://doi.org/10.1038/bjc.2012.58

[9] Becker H. M. (2020). Carbonic anhydrase IX and acid transport in cancer. British journal of cancer, 122(2), 157–167. https://doi.org/10.1038/s41416-019-0642-z

[10] Mboge, M. Y., Mahon, B. P., McKenna, R., & Frost, S. C. (2018). Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites, 8(1), 19. https://doi.org/10.3390/metabo8010019

[11] Supuran C. T. (2017). Carbonic Anhydrase Inhibition and the Management of Hypoxic Tumors. Metabolites, 7(3), 48. https://doi.org/10.3390/metabo7030048

[12] Amith, S. R., & Fliegel, L. (2013). Regulation of the Na+/H+ Exchanger (NHE1) in Breast Cancer Metastasis. Cancer research, 73(4), 1259–1264. https://doi.org/10.1158/0008-5472. CAN-12- 4031

[13] Lee, S., Axelsen, T. V., Jessen, N., Pedersen, S. F., Vahl, P., & Boedtkjer, E. (2018). Na+,HCO3--cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene, 37(41), 5569–5584. https://doi.org/10.1038/s41388-018-0353-6

[14] Boedtkjer E. (2019). Na+,HCO3- cotransporter NBCn1 accelerates breast carcinogenesis. Cancer metastasis reviews, 38(1-2), 165–178. https://doi.org/10.1007/s10555-019-09784-7

[15] Paradiso A, Cardone RA, Bellizzi A, Bagorda A, Guerra L, Tommasino M.et al (2004). The Na+-H+ exchanger-1 induces cytoskeletal changes involving reciprocal RhoA and Rac1 signaling, resulting in motility and invasion in MDA-MB-435 cells. Breast cancer research : BCR, 6(6), R616–R628. https://doi.org/10.1186/bcr922

[16] Boedtkjer E, Moreira JM, Mele M, Vahl P, Wielenga VT, Christiansen PM.et al(2013). Contribution of Na+,HCO3(-)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). International journal of cancer, 132(6), 1288–1299. https://doi.org/10.1002/ijc.27782

[17] Lauritzen, G., Jensen, M. B., Boedtkjer, E., Dybboe, R., Aalkjaer, C., Nylandsted, J.et al (2010). NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Experimental cell research, 316(15), 2538–2553. https://doi.org/10.1016/j.yexcr.2010.06.005

[18] Gorbatenko, A., Olesen, C. W., Boedtkjer, E., & Pedersen, S. F. (2014). Regulation and roles of bicarbonate transporters in cancer. Frontiers in physiology, 5, 130. https://doi.org/10.3389/fphys. 2014.00130

[19] Caballero B. (2019). Humans against Obesity: Who Will Win? Advances in nutrition (Bethesda, Md.), 10(suppl_1), S4–S9. https://doi.org/10.1093/advances/nmy055

[20] Armando E Giuliano 1, James L Connolly 2, Stephen B Edge 3Breast Cancer-Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual,CA Cancer J Clin. 2017 Jul 8; 67(4):290-303

[21] Goldhirsch, A., Wood, W. C., Coates, A. S., Gelber, R. D., Thürlimann, B., Senn, H. J, et al (2011). Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Annals of oncology: official journal of the European Society for Medical Oncology, 22(8), 1736–1747. https://doi.org/10.1093/annonc/mdr304

[22] Robey, I. F., & Martin, N. K. (2011). Bicarbonate and dichloroacetate: evaluating pH altering therapies in a mouse model for metastatic breast cancer. BMC cancer, 11, 235. https://doi.org/10. 1186/1471-2407-11-235

[23] Sebastian, N., Wu, T., Driscoll, E., Willers, H., Kelly, S., Musunuru, H. B. et al (2019). Pre-treatment serum bicarbonate predicts for primary tumor control after stereotactic body radiation therapy in patients with localized non-small cell lung cancer. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology, 140, 26–33. https://doi.org/10. 1016/j.radonc.2019.05.014

[24] Li, Y., Gao, R., Zhao, B., & Zhang, Y. (2022). Low Serum Bicarbonate Levels Increase the Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality in Type 2 Diabetes. The Journal of clinical endocrinology and metabolism, 107(11), 3055–3065. https://doi.org/10.1210/clinem/dgac504

[25] Al-Kindi, S. G., Sarode, A., Zullo, M., Rajagopalan, S., Rahman, M., Hostetter, T.et al (2020). Serum Bicarbonate Concentration and Cause-Specific Mortality: The National Health and Nutrition Examination Survey 1999-2010. Mayo Clinic proceedings, 95(1), 113–123. https://doi.org/10.1016/j. mayocp. 2019.05.036

[26] Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature reviews. Cancer, 11(9), 671–677. https://doi.org/10. 1038/nrc 3110 

[27] Ko, M., Quiñones-Hinojosa, A., & Rao, R. (2020). Emerging links between endosomal pH and cancer. Cancer metastasis reviews, 39(2), 519–534. https://doi.org/10.1007/s10555-020-09870-1

[28] Jia, W. J., Jia, H. X., Feng, H. Y., Yang, Y. P., Chen, K., & Su, F. X. (2014). HER2-enriched tumors have the highest risk of local recurrence in Chinese patients treated with breast conservation therapy. Asian Pacific journal of cancer prevention: APJCP, 15(1), 315–320. https://doi.org/10.7314/ apjcp.2014.15.1.315

[29] Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., & McGuire, W. L. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, N.Y.), 235(4785), 177–182. https://doi.org/10.1126/science.3798106

[30] Dent, R., Trudeau, M., Pritchard, K. I., Hanna, W. M., Kahn, H. K., Sawka, C. A,et al (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clinical cancer research: an official journal of the American Association for Cancer Research, 13(15 Pt 1), 4429–4434. https://doi.org/10.1158/1078-0432.CCR-06-3045

[31] Bhardwaj, P., Au, C. C., Benito-Martin, A., Ladumor, H., Oshchepkova, S., Moges, R,et al. (2019). Estrogens and breast cancer: Mechanisms involved in obesity-related development, growth and progression. The Journal of steroid biochemistry and molecular biology, 189, 161–170. https://doi.org/10.1016/j.jsbmb.2019.03.002

[32] Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J.et al. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer research, 69(6), 2260–2268. https://doi.org/10.1158/0008-5472.CAN-07-5575