Welcome to Francis Academic Press

Academic Journal of Engineering and Technology Science, 2024, 7(3); doi: 10.25236/AJETS.2024.070308.

Design and Simulation of a High-Efficiency Cyclone Separator for Bioaerosol Collection

Author(s)

Jiao Ren, Weijie Liu, Yanni Zhang, Jinhua Liu, Zhanwu Ning

Corresponding Author:
Jinhua Liu
Affiliation(s)

Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100052, China

Abstract

In this paper, we utilized the computational fluid dynamics (CFD) method to develop models A1 to A6 with varying column-cone ratios for the wet-wall cyclone sampler. The results indicate that within the pressure drop range of (869.7, 997.8) Pa, model A4 (with a column-cone ratio of 1:2) exhibits the highest collection efficiency, surpassing the lowest by 6.7%. In addition, we modeled B1-B3 with different cyclone heights and found that a cyclone height of 50 mm was most effective for balancing cyclone structures and improving collection efficiency.

Keywords

Bioaerosol Sampling, Wet-Wall Cyclone Field, Efficient Collection, Geometric Parameters

Cite This Paper

Jiao Ren, Weijie Liu, Yanni Zhang, Jinhua Liu, Zhanwu Ning. Design and Simulation of a High-Efficiency Cyclone Separator for Bioaerosol Collection. Academic Journal of Engineering and Technology Science (2024) Vol. 7, Issue 3: 54-63. https://doi.org/10.25236/AJETS.2024.070308.

References

[1] X. Z. Ma, Z. Q. Fang, F. S. Li, K. X. Hu, Determination of performance-parameter design and impact factors of sampling efficiency for bioaerosol cyclones. Biotechnol. Biotechnol. Equip. 34, 640-651 (2020).

[2] W. Hu et al., Biological Aerosol Particles in Polluted Regions. Curr. Pollut. Rep. 6, 65-89 (2020).

[3] V. R. Després et al., Primary biological aerosol particles in the atmosphere: a review. Tellus Ser. B-Chem. Phys. Meteorol. 64, 58 (2012).

[4] H. T. Gao et al., Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols. Plasma Sources Sci. Technol. 30, 17 (2021).

[5] S. D. Judson, V. J. Munster, Nosocomial Transmission of Emerging Viruses via Aerosol-Generating Medical Procedures. Viruses-Basel 11, 12 (2019).

[6] P. E. Taylor, R. C. Flagan, R. Valenta, M. M. Glovsky, Release of allergens as respirable aerosols: A link between grass pollen and asthma. J. Allergy Clin. Immunol. 109, 51-56 (2002).

[7] M. Shiraiwa et al., Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 51, 13545-13567 (2017).

[8] S. Yooseph et al., A Metagenomic Framework for the Study of Airborne Microbial Communities. PLoS One 8, 13 (2013).

[9] X. Y. Li et al., A Robot Assisted High-flow Portable Cyclone Sampler for Bacterial and SARS-CoV-2 Aerosols. Aerosol Air Qual. Res. 21, 13 (2021).

[10] K. J. Heo, H. S. Ko, S. B. Jeong, S. B. Kim, J. H. Jung, Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. Nano Lett. 21, 1017-1024 (2021).

[11] Y. S. Cho et al., Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System. ACS Sens. 5, 395-403 (2020).

[12] G. Sung, C. Ahn, A. Kulkarni, W. G. Shin, T. Kim, Highly efficient in-line wet cyclone air sampler for airborne virus detection. J. Mech. Sci. Technol. 31, 4363-4369 (2017).

[13] J. A. Hubbard, O. A. Ezekoye, J. S. Haglund, Modeling Liquid Film Evaporation in a Wetted Wall Bioaerosol Sampling Cyclone. J. Therm. Sci. Eng. Appl. 5, 10 (2013).

[14] M. D. King, A. R. McFarland, Bioaerosol Sampling with a Wetted Wall Cyclone: Cell Culturability and DNA Integrity of Escherichia coli Bacteria. Aerosol Sci. Technol. 46, 82-93 (2012).

[15] Y. S. Cho, S. C. Hong, J. Choi, J. H. Jung, Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sens. Actuator B-Chem. 284, 525-533 (2019).

[16] K. Pant, C. T. Crowe, P. Irving, On the design of miniature cyclones for the collection of bioaerosols. Powder Technol. 125, 260-265 (2002).

[17] D. Park, J. S. Go, Design of Cyclone Separator Critical Diameter Model Based on Machine Learning and CFD. Processes 8, 13 (2020).

[18] R. A. F. Oliveira, V. G. Guerra, G. C. Lopes, Improvement of collection efficiency in a cyclone separator using water nozzles: A numerical study. Chem. Eng. Process. 145, 13 (2019).

[19] K. Elsayed, C. Lacor, Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations. Chem. Eng. Sci. 65, 6048-6058 (2010).

[20] T. G. Chuah, J. Gimbun, T. S. Y. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technol. 162, 126-132 (2006).

[21] J. Gimbun, T. G. Chuah, T. S. Y. Choong, A. Fakhru'l-Razi, A CFD Study on the Prediction of Cyclone Collection Efficiency. International Journal for Computational Methods in Engineering Science and Mechanics Vol.6, 161-168 (2005).

[22] Y. J. Xiao et al., Optimal design of a wet-type desulphurization absorber by the numerical simulation method. Chem. Eng. Res. Des. 92, 1257-1266 (2014).

[23] G. I. Sigaev et al., Development of a cyclone-based aerosol sampler with recirculating liquid film: Theory and experiment. Aerosol Sci. Technol. 40, 293-308 (2006).