Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2024, 6(5); doi: 10.25236/IJFM.2024.060509.

Correlation analysis between gene IGF2BP3 and the poor prognosis and tumor immune infiltration of Adenocarcinoma of the lung

Author(s)

Shili Xiang1, Junhao Mu2

Corresponding Author:
Junhao Mu
Affiliation(s)

1Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China

2Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China

Abstract

Adenocarcinoma of the lung (LUAD) is a common subtype of lung cancer with a poor prognosis and high incidence worldwide. In recent years, increasing evidence has demonstrated that IGF2BP3 plays an important role in the initiation and progression of many types of human cancer. However, the mechanism of IGF2BP3 in LUAD is still unclear.So we performed pancancer analysis of IGFBP3 expression and prognosis using The Cancer Genome Atlas (TCGA) and UALCAN data. Then, we identified the microRNA and lncRNA that lead to the overexpression of IGFBP3 by using a series of in silico analyses, including expression analysis, correlation analysis and survival expression. Finally, we use TIMER to analyze the correlation of IGF2BP3 expression level with immune cell infiltrating level or immune checkpoint expression level in LUAD. Our study proved that IGF2PB3, upstream lncRNA, and VIRMA can impact m6A modification in LUAD, thus impacting prognosis, and the VIRMA /LINC00665 /has-let-7c-5p /IGF2BP3 axis is also related to tumor immune cells in LUAD. However, these results should be validated by much more clinical trials in future.

Keywords

m6A modification; lnc-RNA; LUAD; immune cell infiltrating

Cite This Paper

Shili Xiang, Junhao Mu. Correlation analysis between gene IGF2BP3 and the poor prognosis and tumor immune infiltration of Adenocarcinoma of the lung. International Journal of Frontiers in Medicine (2024), Vol. 6, Issue 5: 55-66. https://doi.org/10.25236/IJFM.2024.060509.

References

[1] Zhao X, Wang X, Xia W, Li Q, Zhou L, Li QC, et al. A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma [J]. Lung Cancer. 2020;145:10-7.

[2] Brody H. Lung cancer [J]. Nature. 2014;513(7517):S1.

[3] Cheng WC, Chang CY, Lo CC, Hsieh CY, Kuo TT, Tseng GC, et al. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma [J]. Theranostics. 2021;11(8):3661-75.

[4] Shi J, Hua X, Zhu B, Ravichandran S, Wang M, Nguyen C, et al. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study [J]. PLoS Med. 2016;13(12):e1002162.

[5] Marinelli D, Mazzotta M, Scalera S, Terrenato I, Sperati F, D'Ambrosio L, et al. KEAP1-driven co-mutations in lung adenocarcinoma unresponsive to immunotherapy despite high tumor mutational burden [J]. Ann Oncol. 2020;31(12):1746-54.

[6] Wu J, Zheng C, Wang Y, Yang Z, Li C, Fang W, et al. LncRNA APCDD1L-AS1 induces icotinib resistance by inhibition of EGFR autophagic degradation via the miR-1322/miR-1972/miR-324-3p- SIRT5 axis in lung adenocarcinoma [J]. Biomark Res. 2021;9(1):9.

[7] An Y, Duan H. The role of m6A RNA methylation in cancer metabolism [J]. Mol Cancer. 2022;21(1):14.

[8] He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer [J]. Mol Cancer. 2019;18(1):176.

[9] Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures [J]. Nucleic Acids Res. 2021;49(13):7239-55.

[10] Tang Y, Chen K, Song B, Ma J, Wu X, Xu Q, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome [J]. Nucleic Acids Res. 2021;49(D1): D134-d43.

[11] Zhang C, Sun Q, Zhang X, Qin N, Pu Z, Gu Y, et al. Gene amplification-driven RNA methyltransferase KIAA1429 promotes tumorigenesis by regulating BTG2 via m6A-YTHDF2- dependent in lung adenocarcinoma [J]. Cancer Commun (Lond). 2022;42(7):609-26.

[12] Qian X, Yang J, Qiu Q, Li X, Jiang C, Li J, et al. LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC [J]. J Hematol Oncol. 2021;14(1):112.

[13] Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity [J]. Nat Commun. 2021;12(1):295.

[14] Hao CC, Xu CY, Zhao XY, Luo JN, Wang G, Zhao LH, et al. Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma [J]. J Exp Clin Cancer Res. 2020;39(1):256.

[15] Ramesh-Kumar D, Guil S. The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer [J]. Semin Cancer Biol. 2022;86(Pt 3):18-31.

[16] Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, et al. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum [J]. Fish Shellfish Immunol. 2020;106:887-97.

[17] Li J, Cao J, Liang C, Deng R, Li P, Tian J. The analysis of N6-methyladenosine regulators impacting the immune infiltration in clear cell renal cell carcinoma [J]. Med Oncol. 2022;39(4):41.

[18] Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments [J]. Bioinformatics. 2005;21(9):2067-75.

[19] Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses [J]. Nucleic Acids Res. 2017;45(W1):W98-w102.

[20] Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses [J]. Neoplasia. 2017;19(8):649-58.

[21] Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data [J]. Nucleic Acids Res. 2014;42(Database issue):D92-7.

[22] Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features [J]. Nucleic Acids Res. 2016;44(10):e91.

[23] Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells [J]. Cancer Res. 2017;77(21):e108-e10.

[24] Mattick JS, Makunin IV. Non-coding RNA [J]. Hum Mol Genet. 2006;15 Spec No 1:R17-29.

[25] Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, et al. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression [J]. Cell Mol Life Sci. 2019;76(3):441-51.

[26] Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry [J]. Cancer Discov. 2013;3(10):1113-21.

[27] Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation [J]. Nat Rev Mol Cell Biol. 2019;20(10):608-24.

[28] Zhao Y, Shi Y, Shen H, Xie W. m(6)A-binding proteins: the emerging crucial performers in epigenetics [J]. J Hematol Oncol. 2020;13(1):35.

[29] Zhang M, Jin X, Li J, Tian Y, Wang Q, Li X, et al. CeRNASeek: an R package for identification and analysis of ceRNA regulation [J]. Brief Bioinform. 2021;22(3).

[30] Xu J, Xu J, Liu X, Jiang J. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer [J]. Cell Death Discov. 2022;8(1):287.

[31] Azevedo ALK, Gomig THB, Giner IS, Batista M, Marchini FK, Lima RS, et al. Comprehensive analysis of the large and small ribosomal proteins in breast cancer: Insights on proteomic and transcriptomic expression patterns, regulation, mutational landscape, and prognostic significance [J]. Comput Biol Chem. 2022;100:107746.

[32] Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? [J].Cell. 2011;146(3):353-8.

[33] Cong Z, Diao Y, Xu Y, Li X, Jiang Z, Shao C, et al. Long non-coding RNA linc00665 promotes lung adenocarcinoma progression and functions as ceRNA to regulate AKR1B10-ERK signaling by sponging miR-98 [J]. Cell Death Dis. 2019;10(2):84.

[34] Wei W, Zhao X, Liu J, Zhang Z. Downregulation of LINC00665 suppresses the progression of lung adenocarcinoma via regulating miR-181c-5p/ZIC2 axis [J]. Aging (Albany NY). 2021;13(13):17499-515.

[35] Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression [J]. Mol Cancer. 2020;19(1):88.

[36] Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m(6)A reader YTHDF3 [J]. Mol Cancer. 2019;18(1):143.

[37] Chae YK, Arya A, Iams W, Cruz MR, Chandra S, Choi J, et al. Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC) [J]. J Immunother Cancer. 2018;6(1):39.

[38] Waniczek D, Lorenc Z, Śnietura M, Wesecki M, Kopec A, Muc-Wierzgoń M. Tumor-Associated Macrophages and Regulatory T Cells Infiltration and the Clinical Outcome in Colorectal Cancer [J]. Arch Immunol Ther Exp (Warsz). 2017;65(5):445-54.

[39] Zhang H, Liu H, Shen Z, Lin C, Wang X, Qin J, et al. Tumor-infiltrating Neutrophils is Prognostic and Predictive for Postoperative Adjuvant Chemotherapy Benefit in Patients With Gastric Cancer [J]. Ann Surg. 2018;267(2):311-8.

[40] Lyu L, Yao J, Wang M, Zheng Y, Xu P, Wang S, et al. Overexpressed Pseudogene HLA-DPB2 Promotes Tumor Immune Infiltrates by Regulating HLA-DPB1 and Indicates a Better Prognosis in Breast Cancer [J]. Front Oncol. 2020;10:1245.