Frontiers in Medical Science Research, 2025, 7(4); doi: 10.25236/FMSR.2025.070401.
Qi Ling1,2, Lu Yueyue1
1The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, 434000, China
2School of Clinical Medicine, Yangtze University, Jingzhou, Hubei, 434000, China
Short-chain fatty acids (SCFAs) are important metabolites produced by intestinal microorganisms through fermentation of dietary fiber, which play an important role in maintaining intestinal homeostasis, regulating immune function and metabolism. Studies have shown that SCFAs play an important role in inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), non-alcoholic fatty liver disease (NAFLD), severe acute pancreatitis (SAP), and colon cancer (CRC) by enhancing the intestinal barrier, inhibiting inflammation, regulating microbiota composition, and regulating energy metabolismand other digestive tract diseases. Clinical studies have preliminarily validated the therapeutic potential of SCFAs, and common supplementation methods include probiotics in combination with prebiotics, butyric acid enema, and fecal transplantation. Although its application faces challenges such as individual microbiota differences and insufficient persistence, SCFAs, as mediators of microbiome regulation, show broad prospects in the treatment of digestive tract diseases. Future research needs to optimize the delivery system of SCFAs, explore individualized treatment strategies based on multi-omics technology, and conduct large-scale randomized controlled trials to verify their long-term efficacy and safety.
Short-Chain Fatty Acids (Scfas), Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS), Nonalcoholic Fatty Liver Disease (NAFLD), Severe Acute Pancreatitis (SAP), Colon Cancer (CRC), Iintestinal Microbiota
Qi Ling, Lu Yueyue. Multidimensional Mechanism and Clinical Prospect of Short-Chain Fatty Acids in Digestive Tract Diseases. Frontiers in Medical Science Research (2025), Vol. 7, Issue 4: 1-14. https://doi.org/10.25236/FMSR.2025.070401.
[1] Blaak E E, Canfora E E, Theis S, et al. Short chain fatty acids in human gut and metabolic health[J]. Beneficial microbes, 2020, 11(5): 411-455.
[2] Cong J, Zhou P, Zhang R. Intestinal microbiota-derived short chain fatty acids in host health and disease[J]. Nutrients, 2022, 14(9): 1977.
[3] Gao Y, Yao Q, Meng L, et al. Double-side role of short chain fatty acids on host health via the gut-organ axes[J]. Animal Nutrition, 2024.
[4] Kimura I, Ichimura A, Ohue-Kitano R, et al. Free fatty acid receptors in health and disease[J]. Physiological reviews, 2019.
[5] Pérez-Reytor D, Puebla C, Karahanian E, et al. Use of short-chain fatty acids for the recovery of the intestinal epithelial barrier affected by bacterial toxins[J]. Frontiers in physiology, 2021, 12: 650313.
[6] Du Y, He C, An Y, et al. The role of short chain fatty acids in inflammation and body health[J]. International journal of molecular sciences, 2024, 25(13): 7379.
[7] Ratajczak W, Rył A, Mizerski A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochimica Polonica, 2019, 66(1): 1-12.
[8] Roessler J, Zimmermann F, Schumann P, et al. Modulation of the serum metabolome by the short-chain fatty acid propionate: potential implications for its cholesterol-lowering effect[J]. Nutrients, 2024, 16(14): 2368.
[9] Bach Knudsen K E, Lærke H N, Hedemann M S, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation[J]. Nutrients, 2018, 10(10): 1499.
[10] Wang R X, Lee J S, Campbell E L, et al. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin[J]. Proceedings of the National Academy of Sciences, 2020, 117(21): 11648-11657.
[11] Yao Y ,Xiaoyu C ,Weidong F , et al.The role of short-chain fatty acids in immunity, inflammation and metabolism.[J].Critical reviews in food science and nutrition,2020,62(1):11-12.
[12] Van de Wouw M, Boehme M, Lyte J M, et al. Short‐chain fatty acids: microbial metabolites that alleviate stress‐induced brain–gut axis alterations[J]. The Journal of physiology, 2018, 596(20): 4923-4944.
[13] Feng W, Ao H, Peng C. Gut microbiota, short-chain fatty acids, and herbal medicines[J]. Frontiers in pharmacology, 2018, 9: 1354.
[14] Benvenuti L, D'Antongiovanni V, Pellegrini C, et al. Dietary supplementation with the probiotic SF68 reinforces intestinal epithelial barrier in obese mice by improving butyrate bioavailability[J]. Molecular nutrition & food research, 2023, 67(13): 2200442.
[15] Kang J, Sun M, Chang Y, et al. Butyrate ameliorates colorectal cancer through regulating intestinal microecological disorders[J]. Anti-Cancer Drugs, 2023, 34(2): 227-237.
[16] Macfarlane S, Macfarlane G T. Regulation of short-chain fatty acid production[J]. Proceedings of the Nutrition Society, 2003, 62(1): 67-72.
[17] Mortensen P B, Clausen M R. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease[J]. Scandinavian Journal of gastroenterology, 1996, 31(sup216): 132-148.
[18] Liu M, Lu Y, Xue G, et al. Role of short‐chain fatty acids in host physiology[J]. Animal Models and Experimental Medicine, 2024, 7(5): 641-652.
[19] Rauf A, Khalil A A, Rahman U, et al. Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(22): 6034-6054.
[20] Saleri R, Borghetti P, Ravanetti F, et al. Effects of different short-chain fatty acids (SCFA) on gene expression of proteins involved in barrier function in IPEC-J2[J]. Porcine Health Management, 2022, 8(1): 21.
[21] Song M, Zhang Z, Li Y, et al. Midgut microbiota affects the intestinal barrier by producing short-chain fatty acids in Apostichopus japonicus[J]. Frontiers in Microbiology, 2023, 14: 1263731.
[22] Sun J, Wang X, **ao J, et al. Autophagy mediates the impact of Porphyromonas gingivalis on short-chain fatty acids metabolism in periodontitis-induced gut dysbiosis[J]. Scientific Reports, 2024, 14(1): 26291.
[23] Sonia F ,Nicola V ,Matteo C , et al.Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease.[J].Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society,2020,32(10):e13914.
[24] Helen E ,Grainne L ,Calvin J C , et al.Colonisation of the colonic mucus gel layer with butyrogenic and hydrogenotropic bacteria in health and ulcerative colitis[J].Scientific Reports, 2021,11(1):7262-7262.
[25] Wang L, Xu H, Tan B, et al. Gut microbiota and its derived SCFAs regulate the HPGA to reverse obesity-induced precocious puberty in female rats[J]. Frontiers in Endocrinology, 2022, 13: 1051797.
[26] Xu Y H, Gao C L, Guo H L, et al. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice[J]. Journal of Endocrinology, 2018, 238(3): 231-244.
[27] Chen J ,Vitetta L .Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications[J].International Journal of Molecular Sciences,2020,21(15):5214-.
[28] Albillos A ,Gottardi D A ,Rescigno M .The gut-liver axis in liver disease: Pathophysiological basis for therapy[J].Journal of Hepatology,2020,72(3):558-577.
[29] Yang C ,Wu J ,Yang L , et al.Altered gut microbial profile accompanied by abnormal short chain fatty acid metabolism exacerbates nonalcoholic fatty liver disease progression[J].Scientific Reports, 2024, 14(1):22385-22385.
[30] Da Z ,Jian-Gao F .Microbial metabolites in non-alcoholic fatty liver disease.[J].World journal of gastroenterology,2019,25(17):2019-2028.
[31] Shumin Z ,Jingwen Z ,Fei X , et al.Dietary fiber-derived short-chain fatty acids: A potential therapeutic target to alleviate obesity-related nonalcoholic fatty liver disease.[J].Obesity reviews : an official journal of the International Association for the Study of Obesity,2021,22(11):e13316-e13316.
[32] JiWon P ,SungEun K ,Young N L , et al.Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases[J].International Journal of Molecular Sciences,2021,23(1): 426-426.
[33] Kishor P ,K S V ,J M P L , et al.The Role of Gut Microbiome-Derived Short Chain Fatty Acid Butyrate in Hepatobiliary Diseases.[J].The American journal of pathology,2023,193(10):1455-1467.
[34] Fogacci F ,Giovannini M ,Micoli D V , et al.Effect of Supplementation of a Butyrate-Based Formula in Individuals with Liver Steatosis and Metabolic Syndrome: A Randomized Double-Blind Placebo-Controlled Clinical Trial.[J].Nutrients,2024,16(15):2454-2454.
[35] Zhu Y ,Tan K J ,Liu J , et al.Roles of Traditional and Next-Generation Probiotics on Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review and Network Meta-Analysis[J].Antioxidants,2024,13(3):
[36] Teige S E ,Hillestad R M E ,Steinsvik K E , et al.Fecal bacteria and short-chain fatty acids in irritable bowel syndrome: Relations to subtype.[J].Neurogastroenterology and motility,2024,36(9): e14854.
[37] Ju X ,Jiang Z ,Ma J , et al.Changes in Fecal Short-Chain Fatty Acids in IBS Patients and Effects of Different Interventions: A Systematic Review and Meta-Analysis[J].Nutrients,2024,16(11):1727-.
[38] F. I S ,M. D S ,G. F S , et al.Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome[J].BMC Gastroenterology,2021,21(1):37-37.
[39] Nagamine T .The Role of the Gut Microbiota in Individuals with Irritable Bowel Syndrome: A Scoping Review[J].Medicina,2024,60(11):1895-1895.
[40] Lin X ,Qin L ,Mei L , et al.Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome[J].Frontiers in Cellular and Infection Microbiology,2021,11729346-729346.
[41] Stepanov Y ,Budzak I ,Klenina I .Shortchain fatty acids the role in the development of irritable bowel syndrome[J].Gastroenterologìa,2019,53(1):49-53.
[42] Tsukasa N ,Saori M ,Rintaro N , et al.Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome.[J].Scientific reports,2019,9(1):19603.
[43] X L ,M L ,L-X L , et al.Butyrate promotes visceral hypersensitivity in an IBS-like model via enteric glial cell-derived nerve growth factor.[J].Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society,2018,30(4):e13227.
[44] Li J Y ,Li J ,Dai C .Butyrate promotes visceral hypersensitivity in IBS model via mast cell-derived DRG neuron lincRNA-01028-PKC-TRPV1 pathway.[J].mBio,2024,e0153324.
[45] A E F ,Alexandra S ,Julian A , et al.Gut microbiome structure and metabolic activity in inflammatory bowel disease.[J].Nature microbiology,2019,4(2):293-305.
[46] Venegas D P , Fuente M K D L , Landskron G ,et al.Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases[J]. Frontiers in Immunology, 2019, 10:277.DOI:10.3389/fimmu.2019.00277.
[47] Edda,Russo,Francesco,et al.Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease.[J].Frontiers in immunology, 2019, 10:2754-2754.DOI:10.3389/fimmu.2019.02754.
[48] Martin-Gallausiaux C , Marinelli L ,Hervé M Blottière,et al.SCFA: mechanisms and functional importance in the gut.[J].Cambridge University Press, 2021(1).DOI:10.1017/S0029665120006916.
[49] Lührs,H,Gerke,et al.Butyrate Inhibits NF-κB Activation in Lamina Propria Macrophages of Patients with Ulcerative Colitis.[J].Scandinavian Journal of Gastroenterology, 2002.DOI:10. 1080/003655202317316105.
[50] Jaworska K, Konop M, Bielinska K, et al. Inflammatory bowel disease is associated with increased gut‐to‐blood penetration of short‐chain fatty acids: A new, non‐invasive marker of a functional intestinal lesion[J]. Experimental Physiology, 2019, 104(8): 1226-1236.
[51] Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery[J]. Frontiers in Immunology, 2024, 15: 1385907.
[52] Yan D , Ye S , He Y ,et al.Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment[J].Frontiers in Immunology, 2023.DOI:10.3389/fimmu.2023.1286667.
[53] Shin Y , Han S , Kwon J ,et al.Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease[J].Nutrients, 2023, 15(20).DOI:10.3390/nu15204466.
[54] Scheppach W , Sommer H , Kirchner T ,et al.Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis.[J].Gastroenterology, 1992, 103(1):51-56.DOI:10.1055/s-2007-1010542.
[55] Trapecar M , Communal C , Velazquez J ,et al.Gut-Liver Physiomimetics Reveal Paradoxical Modulation of IBD-Related Inflammation by Short-Chain Fatty Acids[J]. 2020.DOI:10.1016/j.cels. 2020.02.008.
[56] Yan X, Li J, Wu D. The role of short-chain fatty acids in acute pancreatitis[J]. Molecules, 2023, 28(13): 4985.
[57] Pan X, Fang X, Wang F, et al. Butyrate ameliorates caerulein‐induced acute pancreatitis and associated intestinal injury by tissue‐specific mechanisms[J]. British journal of pharmacology, 2019, 176(23): 4446-4461.
[58] Xiao S, Jing S, Jiakui S, et al. Butyrate ameliorates intestinal epithelial barrier injury via enhancing Foxp3+ Regulatory T-cell function in severe acute pancreatitis model[J]. The Turkish Journal of Gastroenterology, 2022, 33(8): 710.
[59] Berg F F V D , Dalen D V , Hyoju S K ,et al.Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate[J].Gut;Journal of British Society of Gasteroenterology, 2021, 70(5):13.DOI:10.1136/gutjnl-2019-320430.
[60] Wang Z, Liu J, Li F, et al. The gut-lung axis in severe acute Pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids[J]. Pharmacological Research, 2022, 182: 106321.
[61] Chen X, Chen X, Yan D, et al. GV-971 prevents severe acute pancreatitis by remodeling the microbiota-metabolic-immune axis[J]. Nature communications, 2024, 15(1): 8278.
[62] Alvandi E , Wong W K M , Joglekar M V ,et al.Short-chain fatty acid concentrations in the incidence and risk-stratification of colorectal cancer: a systematic review and meta-analysis[J].BMC Medicine, 2022, 20(1):1-11.DOI:10.1186/s12916-022-02529-4.
[63] Sze M A, Topçuoğlu B D, Lesniak N A, et al. Fecal short-chain fatty acids are not predictive of colonic tumor status and cannot be predicted based on bacterial community structure[J]. MBio, 2019, 10(4): 10.1128/mbio. 01454-19.
[64] Lu Y, Zhao Y C, Chang-Claude J, et al. Genetic predictors for fecal propionate and butyrate-producing microbiome pathway are not associated with colorectal cancer risk: A mendelian randomization analysis[J]. Cancer Epidemiology, Biomarkers & Prevention, 2023, 32(2): 281-286.
[65] Niccolai E, Baldi S, Ricci F, et al. Evaluation and comparison of short chain fatty acids composition in gut diseases[J]. World journal of gastroenterology, 2019, 25(36): 5543.
[66] Li N, Niu L, Liu Y, et al. Taking SCFAs produced by Lactobacillus reuteri orally reshapes gut microbiota and elicits antitumor responses[J]. Journal of Nanobiotechnology, 2024, 22(1): 241.
[67] Wu Q L, Fang X T, Wan X X, et al. Fusobacterium nucleatum-induced imbalance in microbiome-derived butyric acid levels promotes the occurrence and development of colorectal cancer[J]. World Journal of Gastroenterology, 2024, 30(14): 2018.
[68] Okumura S , Konishi Y , Narukawa M ,et al.Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion[J]. 2021.
[69] Chen Y, Fang H , Chen H ,et al.Bifidobacterium inhibits the progression of colorectal tumorigenesis in mice through fatty acid isomerization and gut microbiota modulation[J].Gut Microbes, 2025, 17(1).DOI:10.1080/19490976.2025.2464945.
[70] Wang G, Yu Y, Wang Y Z, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. Journal of cellular physiology, 2019, 234(10): 17023-17049.
[71] Binienda A , Fichna J .Current understanding of free fatty acids and their receptors in colorectal cancer treatment[J].Nutrition Research, 2024, 127(000):11.DOI:10.1016/j.nutres.2024.05.007.
[72] Kang X, Liu C, Ding Y, et al. Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells[J]. Gut, 2023, 72(11): 2112-2122.
[73] Binienda A ,Machelak W ,Zielińska M , et al.Free fatty acid receptors type 2 and 4 mediate the anticancer effects of fatty acids in colorectal cancer - in vitro and in vivo studies.[J].Biochimica et biophysica acta. Molecular basis of disease,2025,1871(4):167708.
[74] He Y, Ling Y, Zhang Z, et al. Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression[J]. Redox biology, 2023, 65: 102822.
[75] Nica D V .Sodium Butyrate: A Multifaceted Modulator in Colorectal Cancer Therapy[J]. Medicina, 2025, 61.DOI:10.3390/medicina61010136.
[76] Kim N, Yang C. Sodium butyrate inhibits the expression of thymidylate synthase and induces cell death in colorectal cancer cells[J]. International Journal of Molecular Sciences, 2024, 25(3): 1572.
[77] Oncel S ,Safratowich D B ,Zeng H .The Protective Potential of Butyrate against Colon Cancer Cell Migration and Invasion Is Critically Dependent on Cell Type.[J].Molecular nutrition & food research,2024,68(20):e2400421.
[78] Zhang Q ,Qin Y ,Sun X , et al.Sodium butyrate blocks the growth of colorectal cancer by inhibiting the aerobic glycolysis mediated by SIRT4/HIF-1α.[J].Chemico-biological interactions,2024, 403111227.
[79] Nshanian M , Gruber J J , Geller B S ,et al.Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression[J].Nature Metabolism[2025-04-25].DOI:10.1038/s42255-024-01191-9.
[80] Xi Y, Jing Z, Wei W, et al. Inhibitory effect of sodium butyrate on colorectal cancer cells and construction of the related molecular network[J]. BMC cancer, 2021, 21: 1-16.
[81] Zhang Y, Tao Y, Gu Y, et al. Butyrate facilitates immune clearance of colorectal cancer cells by suppressing STAT1-mediated PD-L1 expression[J]. Clinics, 2024, 78: 100303.
[82] Pan D ,Hao J ,Wu T , et al.Sodium Butyrate Inhibits the Malignant Proliferation of Colon Cancer Cells via the miR-183/DNAJB4 Axis.[J].Biochemical genetics,2024,62(5):4174-4190.
[83] Mowat C, Dhatt J, Bhatti I, et al. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity[J]. Frontiers in Immunology, 2023, 14: 1190810.
[84] Park M, Kwon J, Shin H J, et al. Butyrate enhances the efficacy of radiotherapy via FOXO3A in colorectal cancer patient-derived organoids[J]. International journal of oncology, 2020, 57(6): 1307-1318.
[85] Ma X , Zhou Z , Zhang X ,et al.Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice[J].Cell Biology and Toxicology, 2020, 36(5):1-7.DOI:10. 1007/s10565-020-09518-4.
[86] Gomes S, Rodrigues A C, Pazienza V, et al. Modulation of the tumor microenvironment by microbiota-derived short-chain fatty acids: impact in colorectal cancer therapy[J]. International Journal of Molecular Sciences, 2023, 24(6): 5069.