Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(4); doi: 10.25236/FMSR.2025.070402.

The radiobiological mechanism of FLASH radiotherapy

Author(s)

Lingbo Zhang, Meifeng Fu

Corresponding Author:
Meifeng Fu
Affiliation(s)

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, China

Abstract

The core goal of radiotherapy is to eradicate tumors and minimize toxicity to normal tissues to the greatest extent. FLASH radiotherapy (Flash-RT), as a cutting-edge technology in the field of tumor radiotherapy, is regarded as an important direction to break through the limitations of the traditional treatment window. Recent preclinical studies have shown that FLASH-RT significantly expands the therapeutic window of radiotherapy through its unique characteristics of extremely short irradiation time (<0.1 seconds) and ultra-high dose rate (>40 Gy/s) - it can not only enhance the anti-tumor effect and maintain the tumor control probability (TCP) by increasing the dose, It can also reduce the probability of normal tissue complications (NTCP). Furthermore, the significant reduction in its treatment time can avoid the positioning errors caused by organ movement and expand the group of treatable patients. However, due to the extremely short action time of FLASH-RT, the current mechanism research on its biological effects is mostly based on indirect evidence, and some mechanisms are not yet clear and there are contradictory conclusions. This article systematically reviews the radiobiological mechanism of FLASH-RT and, in combination with the limitations of existing research, proposes the key directions for future research.

Keywords

FLASH, Biological mechanism, Tumor

Cite This Paper

Lingbo Zhang, Meifeng Fu. The radiobiological mechanism of FLASH radiotherapy. Frontiers in Medical Science Research (2025), Vol. 7, Issue 4: 15-21. https://doi.org/10.25236/FMSR.2025.070402.

References

[1] Schwartz, S.M. (2024). Epidemiology of Cancer. Clin Chem 70, 140-149. 10.1093/clinchem/hvad202.

[2] Thariat, J., Hannoun-Levi, J.M., Sun Myint, A., Vuong, T., and Gérard, J.P. (2013). Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10, 52-60. 10.1038/nrclinonc.2012.203.

[3] Kerkmeijer, L.G.W., Groen, V.H., Pos, F.J., Haustermans, K., Monninkhof, E.M., Smeenk, R.J., Kunze-Busch, M., de Boer, J.C.J., van der Voort van Zijp, J., van Vulpen, M., et al. (2021). Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for Patients With Localized Prostate Cancer: Results From the FLAME Randomized Phase III Trial. J Clin Oncol 39, 787-796. 10.1200/jco.20.02873.

[4] Rim, C.H., Park, S., Yoon, W.S., Shin, I.S., and Park, H.C. (2023). Radiotherapy for bone metastases of hepatocellular carcinoma: a hybrid systematic review with meta-analyses. Int J Radiat Biol 99, 419-430. 10.1080/09553002.2022.2094020.

[5] Zhang, Z., Liu, X., Chen, D., and Yu, J. (2022). Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 7, 258. 10.1038/s41392-022-01102-y.

[6] Delaney, G., Jacob, S., Featherstone, C., and Barton, M. (2005). The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104, 1129-1137. 10.1002/cncr.21324.

[7] Dewey, D.L., and Boag, J.W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature 183, 1450-1451. 10.1038/1831450a0.

[8] Cheng, Y.K., Kuo, S.H., Yen, H.H., Wu, J.H., Chen, Y.C., and Huang, M.Y. (2022). The prognostic significance of pretreatment squamous cell carcinoma antigen levels in cervical cancer patients treated by concurrent chemoradiation therapy and a comparison of dosimetric outcomes and clinical toxicities between tomotherapy and volumetric modulated arc therapy. Radiat Oncol 17, 91. 10.1186/s13014-022-02063-w.

[9] Paganetti, H., Botas, P., Sharp, G.C., and Winey, B. (2021). Adaptive proton therapy. Phys Med Biol 66. 10.1088/1361-6560/ac344f.

[10] Lin, S.H., Hobbs, B.P., Verma, V., Tidwell, R.S., Smith, G.L., Lei, X., Corsini, E.M., Mok, I., Wei, X., Yao, L., et al. (2020). Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. J Clin Oncol 38, 1569-1579. 10.1200/jco.19.02503.

[11] Favaudon, V., Labarbe, R., and Limoli, C.L. (2022). Model studies of the role of oxygen in the FLASH effect. Med Phys 49, 2068-2081. 10.1002/mp.15129.

[12] Favaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., Poupon, M.F., Brito, I., Hupé, P., Bourhis, J., et al. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med 6, 245ra293. 10.1126/scitranslmed.3008973.

[13] Gao, F., Yang, Y., Zhu, H., Wang, J., Xiao, D., Zhou, Z., Dai, T., Zhang, Y., Feng, G., Li, J., et al. (2022). First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays. Radiother Oncol 166, 44-50. 10.1016/j.radonc.2021.11.004.

[14] Zhang, Q., Gerweck, L.E., Cascio, E., Gu, L., Yang, Q., Dong, X., Huang, P., Bertolet, A., Nesteruk, K.P., Sung, W., et al. (2023). Absence of Tissue-Sparing Effects in Partial Proton FLASH Irradiation in Murine Intestine. Cancers (Basel) 15. 10.3390/cancers15082269.

[15] Verginadis, II, Velalopoulou, A., Kim, M.M., Kim, K., Paraskevaidis, I., Bell, B., Oliaei Motlagh, S.A., Karaj, A., Banerjee, E., Finesso, G., et al. (2024). FLASH proton reirradiation, with or without hypofractionation, mitigates chronic toxicity in the normal murine intestine, skin, and bone. bioRxiv. 10.1101/2024.07.08.602528.

[16] Jansen, J., Kimbler, A., Drayson, O., Lanz, B., Mosso, J., Grilj, V., Petit, B., Franco-Perez, J., Simon, A., Limoli, C.L., et al. (2025). Ex vivo brain MRI to assess conventional and FLASH brain irradiation effects. Radiother Oncol 208, 110894. 10.1016/j.radonc.2025.110894.

[17] Zhang, Q., Gerweck, L.E., Cascio, E., Yang, Q., Huang, P., Niemierko, A., Bertolet, A., Nesteruk, K.P., McNamara, A., and Schuemann, J. (2023). Proton FLASH effects on mouse skin at different oxygen tensions. Phys Med Biol 68. 10.1088/1361-6560/acb888.

[18] Iturri, L., Bertho, A., Lamirault, C., Brisebard, E., Juchaux, M., Gilbert, C., Espenon, J., Sébrié, C., Jourdain, L., de Marzi, L., et al. (2023). Oxygen supplementation in anesthesia can block FLASH effect and anti-tumor immunity in conventional proton therapy. Commun Med (Lond) 3, 183. 10.1038/s43856-023-00411-9.

[19] Liljedahl, E., Konradsson, E., Gustafsson, E., Jonsson, K.F., Olofsson, J.K., Ceberg, C., and Redebrandt, H.N. (2022). Long-term anti-tumor effects following both conventional radiotherapy and FLASH in fully immunocompetent animals with glioblastoma. Sci Rep 12, 12285. 10.1038/s41598-022-16612-6.

[20] Maxim, P.G., Keall, P., and Cai, J. (2019). FLASH radiotherapy: Newsflash or flash in the pan? Med Phys 46, 4287-4290. 10.1002/mp.13685.

[21] Citrin, D.E., Shankavaram, U., Horton, J.A., Shield, W., 3rd, Zhao, S., Asano, H., White, A., Sowers, A., Thetford, A., and Chung, E.J. (2013). Role of type II pneumocyte senescence in radiation-induced lung fibrosis. J Natl Cancer Inst 105, 1474-1484. 10.1093/jnci/djt212.

[22] Tang, W., Wang, H., Zhao, X., Liu, S., Kong, S.K., Ho, A., Chen, T., Feng, H., and He, H. (2022). Stem cell differentiation with consistent lineage commitment induced by a flash of ultrafast-laser activation in vitro and in vivo. Cell Rep 38, 110486. 10.1016/j.celrep.2022.110486.

[23] Fouillade, C., Curras-Alonso, S., Giuranno, L., Quelennec, E., Heinrich, S., Bonnet-Boissinot, S., Beddok, A., Leboucher, S., Karakurt, H.U., Bohec, M., et al. (2020). FLASH Irradiation Spares Lung Progenitor Cells and Limits the Incidence of Radio-induced Senescence. Clin Cancer Res 26, 1497-1506. 10.1158/1078-0432.Ccr-19-1440.

[24] Mare, M., Colarossi, L., Veschi, V., Turdo, A., Giuffrida, D., Memeo, L., Stassi, G., and Colarossi, C. (2021). Cancer Stem Cell Biomarkers Predictive of Radiotherapy Response in Rectal Cancer: A Systematic Review. Genes (Basel) 12. 10.3390/genes12101502.

[25] Yoon, G., Kim, S.M., Kim, H.J., and Seo, A.N. (2016). Clinical influence of cancer stem cells on residual disease after preoperative chemoradiotherapy for rectal cancer. Tumour Biol 37, 3571-3580. 10.1007/s13277-015-4201-9.

[26] Chen, T., Zhang, Y., Guo, W.H., Meng, M.B., Mo, X.M., and Lu, Y. (2010). Effects of heterochromatin in colorectal cancer stem cells on radiosensitivity. Chin J Cancer 29, 270-276. 10.5732/cjc.009.10694.

[27] Chen, Q., Zeng, Y.N., Zhang, K., Zhao, Y., Wu, Y.Y., Li, G., Cheng, H.Y., Zhang, M., Lai, F., Wang, J.B., and Cui, F.M. (2019). Polydatin Increases Radiosensitivity by Inducing Apoptosis of Stem Cells in Colorectal Cancer. Int J Biol Sci 15, 430-440. 10.7150/ijbs.27050.

[28] Anuja, K., Chowdhury, A.R., Saha, A., Roy, S., Rath, A.K., Kar, M., and Banerjee, B. (2019). Radiation-induced DNA damage response and resistance in colorectal cancer stem-like cells. Int J Radiat Biol 95, 667-679. 10.1080/09553002.2019.1580401.

[29] Puglisi, C., Giuffrida, R., Borzì, G., Di Mattia, P., Costa, A., Colarossi, C., Deiana, E., Picardo, M.C., Colarossi, L., Mare, M., et al. (2020). Radiosensitivity of Cancer Stem Cells Has Potential Predictive Value for Individual Responses to Radiotherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 12. 10.3390/cancers12123672.

[30] Yang, G., Lu, C., Mei, Z., Sun, X., Han, J., Qian, J., Liang, Y., Pan, Z., Kong, D., Xu, S., et al. (2021). Association of Cancer Stem Cell Radio-Resistance Under Ultra-High Dose Rate FLASH Irradiation With Lysosome-Mediated Autophagy. Front Cell Dev Biol 9, 672693. 10.3389/fcell.2021.672693.

[31] Yahyapour, R., Amini, P., Rezapour, S., Cheki, M., Rezaeyan, A., Farhood, B., Shabeeb, D., Musa, A.E., Fallah, H., and Najafi, M. (2018). Radiation-induced inflammation and autoimmune diseases. Mil Med Res 5, 9. 10.1186/s40779-018-0156-7.

[32] Najafi, M., Motevaseli, E., Shirazi, A., Geraily, G., Rezaeyan, A., Norouzi, F., Rezapoor, S., and Abdollahi, H. (2018). Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 94, 335-356. 10.1080/09553002.2018.1440092.

[33] Wang, J., Xu, Z., Wang, Z., Du, G., and Lun, L. (2021). TGF-beta signaling in cancer radiotherapy. Cytokine 148, 155709. 10.1016/j.cyto.2021.155709.

[34] Buonanno, M., Grilj, V., and Brenner, D.J. (2019). Biological effects in normal cells exposed to FLASH dose rate protons. Radiother Oncol 139, 51-55. 10.1016/j.radonc.2019.02.009.

[35] Velalopoulou, A., Karagounis, I.V., Cramer, G.M., Kim, M.M., Skoufos, G., Goia, D., Hagan, S., Verginadis, II, Shoniyozov, K., Chiango, J., et al. (2021). FLASH Proton Radiotherapy Spares Normal Epithelial and Mesenchymal Tissues While Preserving Sarcoma Response. Cancer Res 81, 4808-4821. 10.1158/0008-5472.Can-21-1500.

[36] Zhu, H., Xie, D., Yang, Y., Huang, S., Gao, X., Peng, Y., Wang, B., Wang, J., Xiao, D., Wu, D., et al. (2022). Radioprotective effect of X-ray abdominal FLASH irradiation: Adaptation to oxidative damage and inflammatory response may be benefiting factors. Med Phys 49, 4812-4822. 10.1002/mp.15680.

[37] Acharya, M.M., Baulch, J.E., Lusardi, T.A., Allen, B.D., Chmielewski, N.N., Baddour, A.A., Limoli, C.L., and Boison, D. (2016). Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction. Front Mol Neurosci 9, 42. 10.3389/fnmol.2016.00042.

[38] Zhou, H., Liu, Z., Liu, J., Wang, J., Zhou, D., Zhao, Z., Xiao, S., Tao, E., and Suo, W.Z. (2011). Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. AJNR Am J Neuroradiol 32, 1795-1800. 10.3174/ajnr.A2643.

[39] Montay-Gruel, P., Markarian, M., Allen, B.D., Baddour, J.D., Giedzinski, E., Jorge, P.G., Petit, B., Bailat, C., Vozenin, M.C., Limoli, C., and Acharya, M.M. (2020). Ultra-High-Dose-Rate FLASH Irradiation Limits Reactive Gliosis in the Brain. Radiat Res 194, 636-645. 10.1667/rade-20-00067.1.

[40] Dokic, I., Meister, S., Bojcevski, J., Tessonnier, T., Walsh, D., Knoll, M., Mein, S., Tang, Z., Vogelbacher, L., Rittmueller, C., et al. (2022). Neuroprotective Effects of Ultra-High Dose Rate FLASH Bragg Peak Proton Irradiation. Int J Radiat Oncol Biol Phys 113, 614-623. 10.1016/j.ijrobp.2022.02.020.

[41] Saigusa, S., Inoue, Y., Tanaka, K., Toiyama, Y., Matsushita, K., Kawamura, M., Okugawa, Y., Hiro, J., Uchida, K., Mohri, Y., and Kusunoki, M. (2012). Clinical significance of LGR5 and CD44 expression in locally advanced rectal cancer after preoperative chemoradiotherapy. Int J Oncol 41, 1643-1652. 10.3892/ijo.2012.1598.

[42] Saigusa, S., Tanaka, K., Toiyama, Y., Yokoe, T., Okugawa, Y., Kawamoto, A., Yasuda, H., Morimoto, Y., Fujikawa, H., Inoue, Y., et al. (2010). Immunohistochemical features of CD133 expression: association with resistance to chemoradiotherapy in rectal cancer. Oncol Rep 24, 345-350. 10.3892/or_00000865.

[43] Saigusa, S., Tanaka, K., Toiyama, Y., Yokoe, T., Okugawa, Y., Ioue, Y., Miki, C., and Kusunoki, M. (2009). Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 16, 3488-3498. 10.1245/s10434-009-0617-z.

[44] Luo, C.W., Wang, J.Y., Hung, W.C., Peng, G., Tsai, Y.L., Chang, T.M., Chai, C.Y., Lin, C.H., and Pan, M.R. (2017). G9a governs colon cancer stem cell phenotype and chemoradioresistance through PP2A-RPA axis-mediated DNA damage response. Radiother Oncol 124, 395-402. 10.1016/j.radonc.2017.03.002.

[45] Wirsdörfer, F., and Jendrossek, V. (2016). The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 7, 591. 10.3389/fimmu.2016.00591.

[46] Campian, J.L., Ye, X., Brock, M., and Grossman, S.A. (2013). Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. Cancer Invest 31, 183-188. 10.3109/07357907.2013.767342.

[47] Davuluri, R., Jiang, W., Fang, P., Xu, C., Komaki, R., Gomez, D.R., Welsh, J., Cox, J.D., Crane, C.H., Hsu, C.C., and Lin, S.H. (2017). Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int J Radiat Oncol Biol Phys 99, 128-135. 10.1016/j.ijrobp.2017.05.037.

[48] Jin, J.Y., Gu, A., Wang, W., Oleinick, N.L., Machtay, M., and Spring Kong, F.M. (2020). Ultra-high dose rate effect on circulating immune cells: A potential mechanism for FLASH effect? Radiother Oncol 149, 55-62. 10.1016/j.radonc.2020.04.054.

[49] Eggold, J.T., Chow, S., Melemenidis, S., Wang, J., Natarajan, S., Loo, P.E., Manjappa, R., Viswanathan, V., Kidd, E.A., Engleman, E., et al. (2022). Abdominopelvic FLASH Irradiation Improves PD-1 Immune Checkpoint Inhibition in Preclinical Models of Ovarian Cancer. Mol Cancer Ther 21, 371-381. 10.1158/1535-7163.Mct-21-0358.

[50] Fauquette, W., Amourette, C., Dehouck, M.P., and Diserbo, M. (2012). Radiation-induced blood-brain barrier damages: an in vitro study. Brain Res 1433, 114-126. 10.1016/j.brainres.2011.11.022.

[51] Yuan, H., Gaber, M.W., McColgan, T., Naimark, M.D., Kiani, M.F., and Merchant, T.E. (2003). Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res 969, 59-69. 10.1016/s0006-8993(03)02278-9.

[52] Allen, B.D., Acharya, M.M., Montay-Gruel, P., Jorge, P.G., Bailat, C., Petit, B., Vozenin, M.C., and Limoli, C. (2020). Maintenance of Tight Junction Integrity in the Absence of Vascular Dilation in the Brain of Mice Exposed to Ultra-High-Dose-Rate FLASH Irradiation. Radiat Res 194, 625-635. 10.1667/rade-20-00060.1.

[53] Levy, K., Natarajan, S., Wang, J., Chow, S., Eggold, J.T., Loo, P.E., Manjappa, R., Melemenidis, S., Lartey, F.M., Schüler, E., et al. (2020). Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci Rep 10, 21600. 10.1038/s41598-020-78017-7.

[54] Kim, M.M., Verginadis, II, Goia, D., Haertter, A., Shoniyozov, K., Zou, W., Maity, A., Busch, T.M., Metz, J.M., Cengel, K.A., et al. (2021). Comparison of FLASH Proton Entrance and the Spread-Out Bragg Peak Dose Regions in the Sparing of Mouse Intestinal Crypts and in a Pancreatic Tumor Model. Cancers (Basel) 13. 10.3390/cancers13164244.

[55] Ruan, J.L., Lee, C., Wouters, S., Tullis, I.D.C., Verslegers, M., Mysara, M., Then, C.K., Smart, S.C., Hill, M.A., Muschel, R.J., et al. (2021). Irradiation at Ultra-High (FLASH) Dose Rates Reduces Acute Normal Tissue Toxicity in the Mouse Gastrointestinal System. Int J Radiat Oncol Biol Phys 111, 1250-1261. 10.1016/j.ijrobp.2021.08.004.

[56] Guo, Z., Buonanno, M., Harken, A., Zhou, G., and Hei, T.K. (2022). Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiat Res 197, 569-582. 10.1667/rade-21-00181.1.

[57] Jay-Gerin, J.P. (2020). Ultra-high dose-rate (FLASH) radiotherapy: Generation of early, transient, strongly acidic spikes in the irradiated tumor environment. Cancer Radiother 24, 332-334. 10.1016/j.canrad.2019.11.004.

[58] Ohsawa, D., Hiroyama, Y., Kobayashi, A., Kusumoto, T., Kitamura, H., Hojo, S., Kodaira, S., and Konishi, T. (2022). DNA strand break induction of aqueous plasmid DNA exposed to 30 MeV protons at ultra-high dose rate. J Radiat Res 63, 255-260. 10.1093/jrr/rrab114.