Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(6); doi: 10.25236/FMSR.2025.070601.

Identification of Ferroptosis-Related Hub Genes and Machine Learning Algorithms in NAFLD-Induced Liver Fibrosis

Author(s)

Siyu Wei, Zhengjie Li, Hongping Mo, Mingming Song, Rui Liu, Tao Pan, Xudong Wen

Corresponding Author:
Tao Pan
Affiliation(s)

Department of Gastroenterology, Chengdu University of Traditional Chinese Medicine Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu, China

Abstract

Ferroptosis has been recognized as a pivotal mechanism in the progression of liver fibrosis and nonalcoholic fatty liver disease (NAFLD), yet its role in NAFLD-induced liver fibrosis (NILF) remains poorly characterized, and reliable diagnostic biomarkers are currently lacking. To address this gap, we employed an integrated bioinformatics approach to identify ferroptosis-related biomarkers for NILF. Transcriptomic data from patients with NILF were obtained from the Gene Expression Omnibus (GEO) database, and ferroptosis-related genes were collected from FerrDb. Key module genes were screened by weighted gene co-expression network analysis (WGCNA), and their intersection with ferroptosis-related genes was subsequently analyzed via protein-protein interaction (PPI) network to identify candidate hub genes. Three machine learning algorithms—LASSO, random forest, and SVM-RFE—were applied to refine the candidate genes, leading to the identification of four central hub genes (IL1B, IL6, SOCS1, TNFAIP3). These genes demonstrated high diagnostic accuracy for NILF (AUC = 0.974). Furthermore, drug prediction analysis indicated that cycloheximide, profenamine, dexamethasone, and chromium compounds may target these hub genes, suggesting their therapeutic potential. Our study reveals novel ferroptosis-linked biomarkers with diagnostic and therapeutic relevance for NILF, offering insights for early detection and targeted intervention.

Keywords

NAFLD-Induced Liver Fibrosis, Ferroptosis, Machine Learning, Biomarker Identification

Cite This Paper

Siyu Wei, Zhengjie Li, Hongping Mo, Mingming Song, Rui Liu, Tao Pan, Xudong Wen. Identification of Ferroptosis-Related Hub Genes and Machine Learning Algorithms in NAFLD-Induced Liver Fibrosis. Frontiers in Medical Science Research (2025), Vol. 7, Issue 6: 1-14. https://doi.org/10.25236/FMSR.2025.070601.

References

[1] N. Roehlen, E. Crouchet, T.F. Baumert, Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives, Cells, 9(4) (2020).

[2] Z.M. Younossi, A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer, Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology, 64(1) (2016) 73-84.

[3] R. Kumar, R.N. Priyadarshi, U. Anand, Non-alcoholic Fatty Liver Disease: Growing Burden, Adverse Outcomes and Associations, J Clin Transl Hepatol, 8(1) (2020) 76-86.

[4] Y. Gong, Z. Liu, Y. Zhang, J. Zhang, Y. Zheng, Z. Wu, AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus, Cell Death Discov, 9(1) (2023) 178.

[5] S. Petta, V.W. Wong, C. Cammà, J.B. Hiriart, G.L. Wong, F. Marra, J. Vergniol, A.W. Chan, V. Di Marco, W. Merrouche, H.L. Chan, M. Barbara, B. Le-Bail, U. Arena, A. Craxì, V. de Ledinghen, Improved noninvasive prediction of liver fibrosis by liver stiffness measurement in patients with nonalcoholic fatty liver disease accounting for controlled attenuation parameter values, Hepatology, 65(4) (2017) 1145-1155.

[6] N. Peleg, A. Issachar, O. Sneh-Arbib, A. Shlomai, AST to Platelet Ratio Index and fibrosis 4 calculator scores for non-invasive assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease, Dig Liver Dis, 49(10) (2017) 1133-1138.

[7] N. Stefan, H.U. Häring, K. Cusi, Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies, Lancet Diabetes Endocrinol, 7(4) (2019) 313-324.

[8] M. Thiele, I.F. Villesen, L. Niu, S. Johansen, K. Sulek, S. Nishijima, L.V. Espen, M. Keller, M. Israelsen, T. Suvitaival, A. Zawadzki, H.B. Juel, M.J. Brol, S.E. Stinson, Y. Huang, M.C.A. Silva, M. Kuhn, E. Anastasiadou, D.J. Leeming, M. Karsdal, J. Matthijnssens, M. Arumugam, L.T. Dalgaard, C. Legido-Quigley, M. Mann, J. Trebicka, P. Bork, L.J. Jensen, T. Hansen, A. Krag, Opportunities and barriers in omics-based biomarker discovery for steatotic liver diseases, J Hepatol, 81(2) (2024) 345-359.

[9] K.E. Corey, R. Pitts, M. Lai, J. Loureiro, R. Masia, S.A. Osganian, J.L. Gustafson, M.M. Hutter, D.W. Gee, O.R. Meireles, E.R. Witkowski, S.M. Richards, J. Jacob, N. Finkel, D. Ngo, T.J. Wang, R.E. Gerszten, C. Ukomadu, L.L. Jennings, ADAMTSL2 protein and a soluble biomarker signature identify at-risk non-alcoholic steatohepatitis and fibrosis in adults with NAFLD, J Hepatol, 76(1) (2022) 25-33.

[10] Y. Vali, J. Lee, J. Boursier, S. Petta, K. Wonders, D. Tiniakos, P. Bedossa, A. Geier, S. Francque, M. Allison, G. Papatheodoridis, H. Cortez-Pinto, R. Pais, J.F. Dufour, D.J. Leeming, S.A. Harrison, Y. Chen, J.F. Cobbold, M. Pavlides, A.G. Holleboom, H. Yki-Jarvinen, J. Crespo, M. Karsdal, R. Ostroff, M.H. Zafarmand, R. Torstenson, K. Duffin, C. Yunis, C. Brass, M. Ekstedt, G.P. Aithal, J.M. Schattenberg, E. Bugianesi, M. Romero-Gomez, V. Ratziu, Q.M. Anstee, P.M. Bossuyt, Biomarkers for staging fibrosis and non-alcoholic steatohepatitis in non-alcoholic fatty liver disease (the LITMUS project): a comparative diagnostic accuracy study, Lancet Gastroenterol Hepatol, 8(8) (2023) 714-725.

[11] K. Shirabe, Y. Bekki, D. Gantumur, K. Araki, N. Ishii, A. Kuno, H. Narimatsu, M. Mizokami, Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: more than a biomarker of liver fibrosis, J Gastroenterol, 53(7) (2018) 819-826.

[12] Y. Bi, S. Liu, X. Qin, M. Abudureyimu, L. Wang, R. Zou, A. Ajoolabady, W. Zhang, H. Peng, J. Ren, Y. Zhang, FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner, J Adv Res, 55 (2024) 45-60.

[13] Z. Zhang, M. Guo, Y. Li, M. Shen, D. Kong, J. Shao, H. Ding, S. Tan, A. Chen, F. Zhang, S. Zheng, RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells, Autophagy, 16(8) (2020) 1482-1505.

[14] Z. Zhang, M. Guo, M. Shen, D. Kong, F. Zhang, J. Shao, S. Tan, S. Wang, A. Chen, P. Cao, S. Zheng, The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells, Redox Biol, 36 (2020) 101619.

[15] J.L. Lu, C.X. Yu, L.J. Song, Programmed cell death in hepatic fibrosis: current and perspectives, Cell Death Discov, 9(1) (2023) 449.

[16] S. Xu, Y. Chen, J. Miao, Y. Li, J. Liu, J. Zhang, J. Liang, S. Chen, S. Hou, Esculin inhibits hepatic stellate cell activation and CCl(4)-induced liver fibrosis by activating the Nrf2/GPX4 signaling pathway, Phytomedicine, 128 (2024) 155465.

[17] N. Yamada, T. Karasawa, J. Ito, D. Yamamuro, K. Morimoto, T. Nakamura, T. Komada, C. Baatarjav, Y. Saimoto, Y. Jinnouchi, K. Watanabe, K. Miura, N. Yahagi, K. Nakagawa, T. Matsumura, K.I. Yamada, S. Ishibashi, N. Sata, M. Conrad, M. Takahashi, Inhibition of 7-dehydrocholesterol reductase prevents hepatic ferroptosis under an active state of sterol synthesis, Nat Commun, 15(1) (2024) 2195.

[18] X. Wang, B. Ma, X. Wen, H. You, C. Sheng, L. Bu, S. Qu, Bone morphogenetic protein 4 alleviates nonalcoholic steatohepatitis by inhibiting hepatic ferroptosis, Cell Death Discov, 8(1) (2022) 234.

[19] Y. Tan, Y. Huang, R. Mei, F. Mao, D. Yang, J. Liu, W. Xu, H. Qian, Y. Yan, HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis, Cell Death Dis, 13(4) (2022) 319.

[20] J. Yi, S. Wu, S. Tan, Y. Qin, X. Wang, J. Jiang, H. Liu, B. Wu, Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis, Cell Death Discov, 7(1) (2021) 374.

[21] T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I.F. Kim, A. Soboleva, M. Tomashevsky, R. Edgar, NCBI GEO: mining tens of millions of expression profiles--database and tools update, Nucleic Acids Res, 35(Database issue) (2007) D760-5.

[22] N. Zhou, X. Yuan, Q. Du, Z. Zhang, X. Shi, J. Bao, Y. Ning, L. Peng, FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations, Nucleic Acids Res, 51(D1) (2023) D571-d582.

[23] W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, 8(1) (2007) 118-27.

[24] L. Gautier, L. Cope, B.M. Bolstad, R.A. Irizarry, affy--analysis of Affymetrix GeneChip data at the probe level, Bioinformatics, 20(3) (2004) 307-15.

[25] M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, 43(7) (2015) e47.

[26] R. Kolde, pheatmap: Pretty Heatmaps, (2019). https://CRAN.R-project.org/package=pheatmap. 

[27] E.K. Gustavsson, D. Zhang, R.H. Reynolds, S. Garcia-Ruiz, M. Ryten, ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2, Bioinformatics, 38(15) (2022) 3844-3846.

[28] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, 9 (2008) 559.

[29] D. He, Q. Li, G. Du, G. Meng, J. Sun, S. Chen, An Integration of Network Pharmacology and Experimental Verification to Investigate the Mechanism of Guizhi to Treat Nephrotic Syndrome, Front Pharmacol, 12 (2021) 755421.

[30] G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, Omics, 16(5) (2012) 284-7.

[31] M. Zhu, Q. Zeng, T. Fan, Y. Lei, F. Wang, S. Zheng, X. Wang, H. Zeng, F. Tan, N. Sun, Q. Xue, J. He, Clinical Significance and Immunometabolism Landscapes of a Novel Recurrence-Associated Lipid Metabolism Signature In Early-Stage Lung Adenocarcinoma: A Comprehensive Analysis, Front Immunol, 13 (2022) 783495.

[32] N.T. Doncheva, J.H. Morris, J. Gorodkin, L.J. Jensen, Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data, J Proteome Res, 18(2) (2019) 623-632.

[33] J. Friedman, T. Hastie, R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, J Stat Softw, 33(1) (2010) 1-22.

[34] M.B. Kursa, Robustness of Random Forest-based gene selection methods, BMC Bioinformatics, 15 (2014) 8.

[35] M.L. Huang, Y.H. Hung, W.M. Lee, R.K. Li, B.R. Jiang, SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier, ScientificWorldJournal, 2014 (2014) 795624.

[36] M.a.W. Kuhn, Hadley, parsnip: A tidy unified interface to models, (2020). https://CRAN.R-project.org/package=parsnip.

[37] M. Yoo, J. Shin, J. Kim, K.A. Ryall, K. Lee, S. Lee, M. Jeon, J. Kang, A.C. Tan, DSigDB: drug signatures database for gene set analysis, Bioinformatics, 31(18) (2015) 3069-71.

[38] E.Y. Chen, C.M. Tan, Y. Kou, Q. Duan, Z. Wang, G.V. Meirelles, N.R. Clark, A. Ma'ayan, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics, 14 (2013) 128.

[39] T. Su, Y. He, M. Wang, H. Zhou, Y. Huang, M. Ye, Q. Guo, Y. Xiao, G. Cai, M. Zhao, J. Wang, X. Luo, Macrophage-Hepatocyte Circuits Mediated by Grancalcin Aggravate the Progression of Metabolic Dysfunction Associated Steatohepatitis, Adv Sci (Weinh), 11(42) (2024) e2406500.

[40] R.L. Philips, Y. Wang, H. Cheon, Y. Kanno, M. Gadina, V. Sartorelli, C.M. Horvath, J.E. Darnell, Jr., G.R. Stark, J.J. O'Shea, The JAK-STAT pathway at 30: Much learned, much more to do, Cell, 185(21) (2022) 3857-3876.

[41] D. Liu, P. Zhang, J. Zhou, R. Liao, Y. Che, M.M. Gao, J. Sun, J. Cai, X. Cheng, Y. Huang, G. Chen, H. Nie, Y.X. Ji, X.J. Zhang, Z. Huang, H. Xu, Z.G. She, H. Li, TNFAIP3 Interacting Protein 3 Overexpression Suppresses Nonalcoholic Steatohepatitis by Blocking TAK1 Activation, Cell Metab, 31(4) (2020) 726-740.e8.

[42] L. Vande Walle, N. Van Opdenbosch, P. Jacques, A. Fossoul, E. Verheugen, P. Vogel, R. Beyaert, D. Elewaut, T.D. Kanneganti, G. van Loo, M. Lamkanfi, Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis, Nature, 512(7512) (2014) 69-73.

[43] N. Sharma, R. Sistla, S.B. Andugulapati, Yohimbine ameliorates liver inflammation and fibrosis by regulating oxidative stress and Wnt/β-catenin pathway, Phytomedicine, 123 (2024) 155182.

[44] T. Liu, L. Zhang, D. Joo, S.C. Sun, NF-κB signaling in inflammation, Signal Transduct Target Ther, 2 (2017) 17023.

[45] G. Yuan, Q. Qiao, A. Jiang, Z. Jiang, H. Luo, L. Huang, J. Wang, Y. Jiang, LPS-induced extracellular AREG triggers macrophage pyroptosis through the EGFR/TLR4 signaling pathway, Front Immunol, 16 (2025) 1549749.

[46] X. Wu, Z.H. Yang, J. Wu, J. Han, Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity, Immunity, 56(5) (2023) 926-943.e7.

[47] M. Xu, R. Gong, J. Xie, S. Xu, S. Wang, Clinical characteristics of lean and non-lean non-alcoholic fatty liver disease: a cross-sectional study, Nutr Metab (Lond), 22(1) (2025) 40.

[48] R. Zhang, R. Kang, D. Tang, Gut Microbiome Mediates Ferroptosis Resistance for Colorectal Cancer Development, Cancer Res, 84(6) (2024) 796-797.

[49] B. Wang, Z.H. Liu, J.J. Li, J.X. Xu, Y.M. Guo, J.X. Zhang, T. Chu, Z.F. Feng, Q.Y. Jiang, D.D. Wu, Role of ferroptosis in breast cancer: Molecular mechanisms and therapeutic interventions, Cell Signal, 134 (2025) 111869.

[50] Y. Hong, Q. An, Z. Wang, B. Hu, Y. Yang, R. Zeng, Y. Yao, Multi-omics Analysis Reveals the Propagation Mechanism of Ferroptosis in Acute Kidney Injury, Inflammation, (2025).

[51] F. Zhang, E.K.K. Lo, C. Chen, J.C. Lee, Felicianna, M.J. Ismaiah, H.K.M. Leung, D.H.L. Tsang, H. El-Nezami, Probiotics Mixture, Prohep: a Potential Adjuvant for Low-Dose Sorafenib in Metabolic Dysfunction-Associated Steatotic Liver Disease-Associated Hepatocellular Carcinoma Suppression Through Modulating Gut Microbiota, Probiotics Antimicrob Proteins, (2025).

[52] S.J. Dixon, K.M. Lemberg, M.R. Lamprecht, R. Skouta, E.M. Zaitsev, C.E. Gleason, D.N. Patel, A.J. Bauer, A.M. Cantley, W.S. Yang, B. Morrison, 3rd, B.R. Stockwell, Ferroptosis: an iron-dependent form of nonapoptotic cell death, Cell, 149(5) (2012) 1060-72.

[53] J.P. Iredale, Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ, J Clin Invest, 117(3) (2007) 539-48.

[54] Y. Du, Z. Guo, Recent progress in ferroptosis: inducers and inhibitors, Cell Death Discov, 8(1) (2022) 501.

[55] Y. Xu, J. Chen, W. Jiang, Y. Zhao, C. Yang, Y. Wu, Q. Li, C. Zhu, Multiplexing Nanodrug Ameliorates Liver Fibrosis via ROS Elimination and Inflammation Suppression, Small, 18(3) (2022) e2102848.

[56] W. Tang, Z. Zhao, Y. Chong, C. Wu, Q. Liu, J. Yang, R. Zhou, Z.X. Lian, G. Liang, Tandem Enzymatic Self-Assembly and Slow Release of Dexamethasone Enhances Its Antihepatic Fibrosis Effect, ACS Nano, 12(10) (2018) 9966-9973.