Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2025, 7(6); doi: 10.25236/FMSR.2025.070602.

Research Progress on the Correlation between the Total Imaging Load and the Damage Caused by Cerebral Small Vessel Disease

Author(s)

He Lingyun, Bai Xiaomei, Cheng Xianglin

Corresponding Author:
Cheng Xianglin
Affiliation(s)

The First Affiliated Hospital of Yangtze University, Jingzhou, China

Abstract

Cerebral small vessel disease (CSVD) encompasses a spectrum of clinical, imaging, and pathological alterations resulting from diverse cerebrovascular pathologies affecting arteries, arterioles, capillaries, and venules. As a primary etiology of lacunar infarcts, white matter hyperintensities, and vascular injury, CSVD typically manifests as acute stroke, cognitive impairment, neuropsychiatric symptoms, and motor disorders. Early clinical detection remains challenging due to non-specific presentations, often leading to delayed diagnosis until symptom onset. Prognosis is generally unfavorable, significantly compromising functional independence. Proactive screening and intervention may decelerate progression and enhance quality of life. This review synthesizes contemporary research on correlations between total imaging burden and cognitive deficits, motor dysfunction, affective disorders, voiding dysfunction, and dysphagia, offering actionable insights for early CSVD diagnosis/management while advancing innovative diagnostic and preventive paradigms.

Keywords

CMB = Cerebral Microhemorrhage, CSVD = Cerebral Small Vessel Disease, MRI = Magnetic Resonance Imaging, PVS = Perivascular Space, VCI = Vascular Cognitive Impairment

Cite This Paper

He Lingyun, Bai Xiaomei, Cheng Xianglin. Research Progress on the Correlation between the Total Imaging Load and the Damage Caused by Cerebral Small Vessel Disease. Frontiers in Medical Science Research (2025), Vol. 7, Issue 6: 15-21. https://doi.org/10.25236/FMSR.2025.070602.

References

[1] C.S.S. Chinese Society of Neurology, Chinese guideline for diagnosis and treatment of cerebral small vessel disease 2020.

[2] R.J. Cannistraro, M. Badi, B.H. Eidelman, D.W. Dickson, E.H. Middlebrooks, and J.F. Meschia, CNS small vessel disease. Neurology 92 (2019) 1146-1156.

[3] J.M. Wardlaw, C. Smith, and M. Dichgans, Small vessel disease: mechanisms and clinical implications. The Lancet. Neurology 18 (2019) 684-696.

[4] C. Haffner, R. Malik, and M. Dichgans, Genetic factors in cerebral small vessel disease and their impact on stroke and dementia. Journal of Cerebral Blood Flow & Metabolism 36 (2015) 158-171.

[5] J.M. Wardlaw, E.E. Smith, G.J. Biessels, C. Cordonnier, F. Fazekas, R. Frayne, R.I. Lindley, J.T. O'Brien, F. Barkhof, O.R. Benavente, S.E. Black, C. Brayne, M. Breteler, H. Chabriat, C. Decarli, F.E. de Leeuw, F. Doubal, M. Duering, N.C. Fox, S. Greenberg, V. Hachinski, I. Kilimann, V. Mok, R. Oostenbrugge, L. Pantoni, O. Speck, B.C. Stephan, S. Teipel, A. Viswanathan, D. Werring, C. Chen, C. Smith, M. van Buchem, B. Norrving, P.B. Gorelick, and M. Dichgans, Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet. Neurology 12 (2013) 822-38.

[6] M. Huijts, A. Duits, R.J. van Oostenbrugge, A.A. Kroon, P.W. de Leeuw, and J. Staals, Accumulation of MRI Markers of Cerebral Small Vessel Disease is Associated with Decreased Cognitive Function. A Study in First-Ever Lacunar Stroke and Hypertensive Patients. Frontiers in Aging Neuroscience 5 (2013).

[7] Zhu, Hui et al. “Effects of cerebral small vessel disease on the outcome of patients with ischemic stroke caused by large artery atherosclerosis.” Neurological research vol. 40,5 (2018): 381-390. doi:10.1080/01616412.2018.1446283

[8] Du, Jing et al. “Structural Brain Network Disruption at Preclinical Stage of Cognitive Impairment Due to Cerebral Small Vessel Disease.” Neuroscience vol. 449 (2020): 99-115. doi:10.1016/j.neuroscience.2020.08.037 

[9] Li, Qian et al. “Cerebral Small Vessel Disease.” Cell transplantation vol. 27,12 (2018): 1711-1722. doi:10.1177/0963689718795148 

[10] C. Iadecola, M. Duering, V. Hachinski, A. Joutel, S.T. Pendlebury, J.A. Schneider, and M. Dichgans, Vascular Cognitive Impairment and Dementia. Journal of the American College of Cardiology 73 (2019) 3326-3344.

[11] L.Y. SHI Qingli, CHEN Hongyan, WANG Jinfang, WANG Dali, ZHANG Yumei., A Study on the Correlation between Brain Network Changes and Attention Function in Patients with Ischemic White Matter Lesion and Cognitive Dysfunction. 10.3969/j.issn.1673-5765.2024.07.009.

[12] Petersen, Marvin et al. “Enhancing Cognitive Performance Prediction through White Matter Hyperintensity Connectivity Assessment: A Multicenter Lesion Network Mapping Analysis of 3,485 Memory Clinic Patients.” medRxiv : the preprint server for health sciences 2024.03.28.24305007. 11 Apr. 2024, doi:10.1101/2024.03.28.24305007. Preprint. 

[13] M. Duering, N. Zieren, D. Hervé, E. Jouvent, S. Reyes, N. Peters, C. Pachai, C. Opherk, H. Chabriat, and M. Dichgans, Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain : a journal of neurology 134 (2011) 2366-75.

[14] Tullberg, M et al. “White matter lesions impair frontal lobe function regardless of their location.” Neurology vol. 63,2 (2004): 246-53. doi:10.1212/01.wnl.0000130530.55104.b5 

[15] J.S. Lim, H.M. Kwon, and Y.S. Lee, Effect of cholinergic pathway disruption on cortical and subcortical volumes in subcortical vascular cognitive impairment. European journal of neurology 27 (2020) 210-212.

[16] M.G. Frasch, J.J. Chen, H.D. Rosas, and D.H. Salat, The Relationship between Cortical Blood Flow and Sub-Cortical White-Matter Health across the Adult Age Span. PLoS ONE 8 (2013).

[17] M. Habes, A. Sotiras, G. Erus, J.B. Toledo, D. Janowitz, D.A. Wolk, H. Shou, N.R. Bryan, J. Doshi, H. Völzke, U. Schminke, W. Hoffmann, S.M. Resnick, H.J. Grabe, and C. Davatzikos, White matter lesions. Neurology 91 (2018).

[18] P. Linortner, F. Fazekas, R. Schmidt, S. Ropele, B. Pendl, K. Petrovic, M. Loitfelder, C. Neuper, and C. Enzinger, White matter hyperintensities alter functional organization of the motor system. Neurobiology of aging 33 (2012) 197.e1-9.

[19] H.Y. Hu, Y.N. Ou, X.N. Shen, Y. Qu, Y.H. Ma, Z.T. Wang, Q. Dong, L. Tan, and J.T. Yu, White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies. Neuroscience and biobehavioral reviews 120 (2021) 16-27.

[20] L.M.Z.W.N.H.L.Y.S.Z.L. Peiyuan1, Correlative analysis of white matter lesions with subcortical is chemic induced vascular cognitive impairment. DOI:10.16557/j. cnki. 1000-7547. 2022. 06. 013

[21] S. Nannoni, L. Ohlmeier, R.B. Brown, R.G. Morris, A.D. MacKinnon, and H.S. Markus, Cognitive impact of cerebral microbleeds in patients with symptomatic small vessel disease. International journal of stroke : official journal of the International Stroke Society 17 (2022) 415-424.

[22] L. Li, D.H. Wu, H.Q. Li, L. Tan, W. Xu, Q. Dong, L. Tan, and J.T. Yu, Association of Cerebral Microbleeds with Cognitive Decline: A Longitudinal Study. Journal of Alzheimer's disease : JAD 75 (2020) 571-579.

[23] J. Zhang, L. Liu, H. Sun, M. Li, Y. Li, J. Zhao, J. Li, X. Liu, Y. Cong, F. Li, and Z. Li, Cerebral Microbleeds Are Associated With Mild Cognitive Impairment in Patients With Hypertension. Journal of the American Heart Association 7 (2018).

[24] W. Jie, G. Lin, Z. Liu, H. Zhou, L. Lin, G. Liang, M. Ou, and M. Lin, The Relationship Between Enlarged Perivascular Spaces and Cognitive Function: A Meta-Analysis of Observational Studies. Frontiers in Pharmacology 11 (2020).

[25] T.J. Libecap, V. Zachariou, C.E. Bauer, D.M. Wilcock, G.A. Jicha, F.D. Raslau, and B.T. Gold, Enlarged Perivascular Spaces Are Negatively Associated With Montreal Cognitive Assessment Scores in Older Adults. Frontiers in Neurology 13 (2022).

[26] X. Li, M. Shen, Y. Jin, S. Jia, Z. Zhou, Z. Han, X. Zhang, X. Tong, and J. Jiao, The Effect of Cerebral Small Vessel Disease on the Subtypes of Mild Cognitive Impairment. Frontiers in Psychiatry 12 (2021).

[27] J. Chojdak-Łukasiewicz, E. Dziadkowiak, A. Zimny, and B. Paradowski, Cerebral small vessel disease: A review. Advances in clinical and experimental medicine : official organ Wroclaw Medical University 30 (2021) 349-356.

[28] Li, Peixi et al. “Cerebral small vessel disease is associated with gait disturbance among community-dwelling elderly individuals: the Taizhou imaging study.” Aging vol. 12,3 (2020): 2814-2824. doi:10.18632/aging.102779 

[29] Y. Wang, and Z. Liu, Research progress on the correlation between MRI and impairment caused by cerebral small vessel disease: A review. Medicine 102 (2023).

[30] Y. Hou, S. Yang, Y. Li, W. Qin, L. Yang, and W. Hu, Association of enlarged perivascular spaces with upper extremities and gait impairment: An observational, prospective cohort study. Frontiers in Neurology 13 (2022).

[31] B. Sharma, M. Wang, C.R. McCreary, R. Camicioli, and E.E. Smith, Gait and falls in cerebral small vessel disease: a systematic review and meta-analysis. Age and ageing 52 (2023).

[32] K. Palmer, A.K. Berger, R. Monastero, B. Winblad, L. Bäckman, and L. Fratiglioni, Predictors of progression from mild cognitive impairment to Alzheimer disease. Neurology 68 (2007) 1596-602.

[33] M.E. Peters, S. Schwartz, D. Han, P.V. Rabins, M. Steinberg, J.T. Tschanz, and C.G. Lyketsos, Neuropsychiatric Symptoms as Predictors of Progression to Severe Alzheimer’s Dementia and Death: The Cache County Dementia Progression Study. American Journal of Psychiatry 172 (2015) 460-465.

[34] J. Cerejeira, L. Lagarto, and E.B. Mukaetova-Ladinska, Behavioral and psychological symptoms of dementia. Front Neurol 3 (2012) 73.

[35] M. Canevelli, N. Adali, T. Voisin, M.E. Soto, G. Bruno, M. Cesari, and B. Vellas, Behavioral and psychological subsyndromes in Alzheimer's disease using the Neuropsychiatric Inventory. International journal of geriatric psychiatry 28 (2013) 795-803.

[36] M.A. Nowrangi, C.G. Lyketsos, and P.B. Rosenberg, Principles and management of neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimer's Research & Therapy 7 (2015).

[37] P. Aalten, F.R. Verhey, M. Boziki, R. Bullock, E.J. Byrne, V. Camus, M. Caputo, D. Collins, P.P. De Deyn, K. Elina, G. Frisoni, N. Girtler, C. Holmes, C. Hurt, A. Marriott, P. Mecocci, F. Nobili, P.J. Ousset, E. Reynish, E. Salmon, M. Tsolaki, B. Vellas, and P.H. Robert, Neuropsychiatric syndromes in dementia. Results from the European Alzheimer Disease Consortium: part I. Dementia and geriatric cognitive disorders 24 (2007) 457-63.

[38] X. Xu, Q.L. Chan, S. Hilal, W.K. Goh, M.K. Ikram, T.Y. Wong, C.Y. Cheng, C.L. Chen, and N. Venketasubramanian, Cerebral microbleeds and neuropsychiatric symptoms in an elderly Asian cohort. Journal of neurology, neurosurgery, and psychiatry 88 (2017) 7-11.

[39] K. Misquitta, M. Dadar, D. Louis Collins, and M.C. Tartaglia, White matter hyperintensities and neuropsychiatric symptoms in mild cognitive impairment and Alzheimer's disease. NeuroImage. Clinical 28 (2020) 102367.

[40] Q.L. Cao, Y. Sun, H. Hu, Z.T. Wang, L. Tan, and J.T. Yu, Association of Cerebral Small Vessel Disease Burden with Neuropsychiatric Symptoms in Non-Demented Elderly: A Longitudinal Study. Journal of Alzheimer's disease : JAD 89 (2022) 583-592.

[41] J.M. Biesbroek, N.A. Weaver, and G.J. Biessels, Lesion location and cognitive impact of cerebral small vessel disease. Clinical science (London, England : 1979) 131 (2017) 715-728.

[42] A. Charidimou, S. Martinez-Ramirez, Y.D. Reijmer, J. Oliveira-Filho, A. Lauer, D. Roongpiboonsopit, M. Frosch, A. Vashkevich, A. Ayres, J. Rosand, M.E. Gurol, S.M. Greenberg, and A. Viswanathan, Total Magnetic Resonance Imaging Burden of Small Vessel Disease in Cerebral Amyloid Angiopathy: An Imaging-Pathologic Study of Concept Validation. JAMA neurology 73 (2016) 994-1001.

[43] Solé-Padullés, Cristina et al. “Intrinsic functional connectivity of fronto-temporal networks in adolescents with early psychosis.” European child & adolescent psychiatry vol. 26,6 (2017): 669-679. doi:10.1007/s00787-016-0931-5 

[44] Baker, Justin T et al. “Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder.” JAMA psychiatry vol. 71,2 (2014): 109-18. doi:10.1001/jamapsychiatry.2013.3469 

[45] U. Clancy, D. Gilmartin, A.C.C. Jochems, L. Knox, F.N. Doubal, and J.M. Wardlaw, Neuropsychiatric symptoms associated with cerebral small vessel disease: a systematic review and meta-analysis. The lancet. Psychiatry 8 (2021) 225-236.

[46] C.H. Chang, C.M. Gonzalez, D.T. Lau, and H.C. Sier, Urinary incontinence and self-reported health among the U.S. Medicare managed care beneficiaries. Journal of aging and health 20 (2008) 405-19.

[47] L. Mody, and M. Juthani-Mehta, Urinary tract infections in older women: a clinical review. Jama 311 (2014) 844-54.

[48] J. Wilmskoetter, H. Bonilha, B.J. Wolf, E. Tracy, A. Chang, B. Martin-Harris, C. Anne Holmstedt, and L. Bonilha, Cerebral small vessel disease is an independent determinant of dysphagia after acute stroke. NeuroImage. Clinical 44 (2024) 103710.

[49] S. Maeshima, A. Osawa, F. Yamane, S. Ishihara, and N. Tanahashi, Association between microbleeds observed on T2*-weighted magnetic resonance images and dysphagia in patients with acute supratentorial cerebral hemorrhage. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association 23 (2014) 2458-63.

[50] L. Zhang, X. Tang, Y. Li, J. Zhu, D. Ding, Y. Zhou, S. Diao, Y. Kong, X. Cai, Y. Yao, and Q. Fang, Total magnetic resonance imaging of cerebral small vessel disease burden predicts dysphagia in patients with a single recent small subcortical infarct. BMC neurology 22 (2022) 1.

[51] R. Uiterwijk, R.J. van Oostenbrugge, M. Huijts, P.W. De Leeuw, A.A. Kroon, and J. Staals, Total Cerebral Small Vessel Disease MRI Score Is Associated with Cognitive Decline in Executive Function in Patients with Hypertension. Frontiers in Aging Neuroscience 8 (2016).