Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(1); doi: 10.25236/FMSR.2023.050110.

New Progress in Ultrasound Molecular Imaging

Author(s)

Yue Zhao, Rong Hu

Corresponding Author:
Rong Hu
Affiliation(s)

Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine No.137, Liyu Shan South Road, Urumgi, Xinjiang, 830054, China

Abstract

With the development of molecular imaging, ultrasound imaging is no longer a means to diagnose diseases, but to the molecular level of accurate medical treatment. The tool of ultrasonic molecular imaging is ultrasound contrast medium. in order to meet the diversified clinical needs, ultrasound contrast agent has developed from the first generation and the second generation to multimodal contrast agent. Targeted ultrasound contrast agent can carry corresponding biomarker factors for localization, imaging and treatment of lesions, which is an important development direction to achieve accurate ultrasound diagnosis and treatment. In this paper, the research progress of ultrasonic molecular imaging technology is reviewed.

Keywords

molecular imaging, ultrasound, targeted contrast agent

Cite This Paper

Yue Zhao, Rong Hu. New Progress in Ultrasound Molecular Imaging. Frontiers in Medical Science Research (2023) Vol. 5, Issue 1: 55-59. https://doi.org/10.25236/FMSR.2023.050110.

References

[1] Cheng Zhongquan, Ma Jiaojiao, Yin Lin, et al. Non-invasive molecular imaging for precision diagnosis of metastatic lymph nodes: opportunities from preclinical to clinical applications.[J] .Eur J Nucl Med Mol Imaging, 2022, undefined: undefined.

[2] Zhou Yuqing, Peng Yulan, Yang Lin et al.Application of Perfluorocarbon Nanoparticles in Ultrasound Molecular Imaging and Therapy.[J]. Chinese Journal of Medical Imaging, 2022, 30 (5): 514-517.

[3] Turco S,Tardy l,Frinking P,et al.Quantitative ultrasound molecular imaging by modeling the binding kinetics of targeted contrast agent.Phys Med Biol, 2017, 62(6): 2449-2464 

[4] Stride Eleanor, Segers Tim,Lajoinie Guillaume et al. Microbubble Agents: New Directions.[J]. Ultrasound Med Biol, 2020, 46: 1326-1343. 

[5] Salih Mohammed, Ali Syed Musadiq, Jena Nihar et al. Review of ultrasound contrast agents in current clinical practice with special focus on DEFINITY in cardiac imaging.[J]. Future Cardiol, 2021, 17: 197-214. 

[6] Porter Thomas R, Feinstein Steve B, Ten Cate Folkert J et al. New Applications in Echocardiography for Ultrasound Contrast Agents in the 21st Century.[J]. Ultrasound Med Biol, 2020, 46: 1071-1081. 

[7] Cen Jie, Ye Xianjun, Liu Xiao et al. Fluorinated Copolypeptide-Stabilized Microbubbles with Maleimide-Decorated Surfaces as Long-Term Ultrasound Contrast Agents.[J]. Angew Chem Int Ed Engl, 2022, 61: e202209610.

[8] Johansen Mette L, Perera Reshani, Abenojar Eric et al. Ultrasound-Based Molecular Imaging of Tumors with PTPmu Biomarker-Targeted Nanobubble Contrast Agents.[J]. Int J Mol Sci, 2021, 22: undefined 

[9] De Leon, A.; Perera, R.; Nittayacharn, P.; Cooley, M.; Jung, O.; Exner, A.A. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy. Adv. Cancer Res. 2018, 139, 57–84. 

[10] Erlichman, D.B.; Weiss, A.; Koenigsberg, M.; Stein, M.W. Contrast enhanced ultrasound: A review of radiology applications. Clin. Imaging 2020, 60, 209–215. 

[11] Kosareva, A.; Abou-Elkacem, L.; Chowdhury, S.; Lindner, J.R.; Kaufmann, B.A. Seeing the Invisible—Ultrasound Molecular Imaging. Ultrasound Med. Biol. 2020, 46, 479–497.  

[12] Zhao Wei,Yu Xiangrong,Peng Shaojun et al. Construction of nanomaterials as contrast agents or probes for glioma imaging.[J] .J Nanobiotechnology, 2021, 19: 125. 

[13] Andrews Laura Emma, Chan Ming-Hsien, Liu Ru-Shi, Nano-lipospheres as acoustically active ultrasound contrast agents: evolving tumor imaging and therapy technique.[J] .Nanotechnology, 2019, 30: 182001. 

[14] Rojas JD, Dayton PA. In vivo molecular imaging using low-boilingpoint phase-change contrast agents: A proof of concept study. Ultrasound Med Biol 2019;45:177–191. 

[15] Zhou Yang, Xu Feng, Liu Ying, Ye Ming, Wang Zhigang, Zhao Yuxin.Preparation and in vitro imaging of a magnetic heating phasetransition multimodal ultrasound contrast agent.[J].Chin J Ultrasonogr, 2020,29(01): 77-82. 

[16] Ramirez DG, Ciccaglione M, Upadhyay AK, Pham VT, Borden MA, Benninger RKP. Detecting insulitis in type 1 diabetes with ultrasound phase-change contrast agents. Proc Natl Acad Sci U S A. 2021 Oct 12;118(41):e2022523118. doi: 10.1073/pnas.2022523118.  

[17] Li Mengmeng. Current status and research progress of multi-modality ultrasound contrast agents. [J]. J Clin Ultrasound in Med, 2020,22(4):284-286. DOI:10.3969/j.issn.1008-6978.2020.04.014. 

[18] Wu Min, Shu Jian, Multimodal Molecular Imaging: Current Status and Future Directions.[J]. Contrast Media Mol Imaging, 2018, 2018: 1382183.

[19] Zhuang Danping, Zhang Huifen, Hu Genwen et al. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma.[J] .J Nanobiotechnology, 2022, 20: 284. 

[20] Zhao Zhenxiang, Swartchick Chelsea B, Chan Jefferson, Targeted contrast agents and activatable probes for photoacoustic imaging of cancer.[J] .Chem Soc Rev, 2022, 51: 829-868. 

[21] Fu JW, Lin YS, Gan SL, Li YR, Wang Y, Feng ST, Li H, Zhou GF. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. Contrast Media Mol Imaging. 2019 Jul 7; 2019:3145647. doi: 10.1155/2019/3145647. 

[22] Hu Chengchenl,Gao Zhi,Wang Zhigan et al. Application of the Diagnosing Lymph Node Metastasis of Rabbit with Tongue Cancer by Indocyanine Green and Liquid Perfluorohexanes Loaded Nanoparticles Contrast Agents Decorated with SDF-1.[J].Chinese J Ultrasound Med, 2018, 34(6): 561-564. DOI:10.3969/j.issn.1002-0101.2018.06.027.

[23] Barmin RA, Rudakovskaya PG, Gusliakova OI, Sindeeva OA, Prikhozhdenko ES, Maksimova EA, Obukhova EN, Chernyshev VS, Khlebtsov BN, Solovev AA, Sukhorukov GB, Gorin DA. Air-Filled Bubbles Stabilized by Gold Nanoparticle/Photodynamic Dye Hybrid Structures for Theranostics. Nanomaterials (Basel). 2021 Feb 6; 11(2):415. doi: 10.3390/nano11020415. 

[24] Sandoval-Pérez Angélica, Mejía-Restrepo Valeria,Aponte-Santamaría Camilo,Thermodynamic stabilization of von Willebrand factor A1 domain induces protein loss of function.[J] .Proteins, 2022, undefined: undefined. 

[25] Tian Jie,Weng Yahui,Sun Ruiying et al. Contrast-enhanced ultrasound molecular imaging of activated platelets in the progression of atherosclerosis using microbubbles bearing the von Willebrand factor A1 domain.[J] .Exp Ther Med, 2021, 22: 721.

[26] Pedro-Botet J, Climent E, Benaiges D. Atherosclerosis and inflammation. New therapeutic approaches. Med Clin (Barc). 2020 Sep 25; 155(6):256-262. English, Spanish. doi: 10. 1016 /j. medcli. 2020. 04.024. Epub 2020 Jun 20. 

[27] Mehta Sourabh, Bongcaron Viktoria, Nguyen Tien K et al. An Ultrasound-Responsive Theranostic Cyclodextrin-Loaded Nanoparticle for Multimodal Imaging and Therapy for Atherosclerosis.[J] .Small, 2022, 18: e2200967. 

[28] Kooiman Klazina, Roovers Silke, Langeveld Simone A G et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery.[J] .Ultrasound Med Biol, 2020, 46: 1296-1325. 

[29] Presset Antoine, Bonneau Corentin, Kazuyoshi Sasaoka et al. Endothelial Cells, First Target of Drug Delivery Using Microbubble-Assisted Ultrasound.[J] .Ultrasound Med Biol, 2020, 46: 1565-1583. 

[30] Lim D, Do Y, Kwon BS, Chang W, Lee MS, Kim J, Cho JG. Angiogenesis and vasculogenic mimicry as therapeutic targets in ovarian cancer. BMB Rep. 2020 Jun;53(6):291-298. doi: 10.5483/BMBRep.2020.53.6.060.

[31] Diakova Galina B,Du Zhongmin,Klibanov Alexander L,Targeted Ultrasound Contrast Imaging of Tumor Vasculature With Positively Charged Microbubbles.[J] .Invest Radiol, 2020, 55: 736-740.

[32] Wu Ying, Sun Ting, Tang Jinhua et al. Ultrasound-Targeted Microbubble Destruction Enhances the Antitumor Efficacy of Doxorubicin in a Mouse Hepatocellular Carcinoma Model.[J] .Ultrasound Med Biol, 2020, 46: 679-689.

[33] Willmann Jürgen K,Bonomo Lorenzo,Testa Antonia Carla et al. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results.[J] .J Clin Oncol, 2017, 35: 2133-2140. 

[34] Li Cong, Hu Suling, Yue Yan, Ultrasound Microbubble-Mediated VHL Regulates the Biological Behavior of Ovarian Cancer Cells.[J] .Ultrasound Med Biol, 2021, 47: 723-732. 

[35] Cheng Li, Zhang Dongmei, Yan Wei, Ultrasound‑targeted microbubble destruction‑mediated overexpression of Sirtuin 3 inhibits the progression of ovarian cancer.[J] .Oncol Rep, 2021, 46: undefined. 

[36] Zhao Shengli, Xie Jing, Zhao Changhua et al. Ultrasound-Targeted Microbubble Destruction Enhances the Inhibitive Efficacy of miR-21 Silencing in HeLa Cells.[J] .Med Sci Monit, 2021, 27: e923660. 

[37] Zou Wendi, Wang Yan, Song Qingqing et al. Ultrasound-targeted microbubble destruction mediated miR-492 inhibitor suppresses the tumorigenesis in non-small cell lung cancer.[J] .Ann Med, 2021, 53: 2246-2255.

[38] Luo Shuilian, Wu Meng, Bai Jiao, et al.Preparation of Herceptin targeted doxorubicin/Indian ink conjugated multifunctional molecular probe: application in imaging diagnosis and treatment of breast cancer. [J].Chin J Med Ultrasound(Electronic Edition),2020,17(6):566-573. DOI: 10. 3877 /cma.j. issn. 1672-6448.2020.06.015. 

[39] Xu Xiaolin, Yu Shuqin, Liu Xiaoyuan et al. Ultrasound-Targeted Microbubble Destruction- Mediated Inhibition of Livin Expression Accelerates Ovarian Cancer Cell Apoptosis.[J]. Genet Res (Camb), 2021, 2021: 7624346. 

[40] Liu Yi, Long Tengfei, Zhang Ni et al. Ultrasound-Mediated Long-Circulating Nanopolymer Delivery of Therapeutic siRNA and Antisense MicroRNAs Leads to Enhanced Paclitaxel Sensitivity in Epithelial Ovarian Cancer Chemotherapy.[J]. ACS Biomater Sci Eng, 2020, 6: 4036-4050.