Welcome to Francis Academic Press

Frontiers in Medical Science Research, 2023, 5(3); doi: 10.25236/FMSR.2023.050305.

The effect of bone mineral metabolism disorder on cardiovascular events in uremia patients

Author(s)

Kou Wanyu1, Guo Guangfeng1, Gan Hua1,2

Corresponding Author:
Gan Hua
Affiliation(s)

1The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

2Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China

Abstract

In patients with chronic renal insufficiency, mortality is higher in dialysis patients than in non-dialysis patients, and cardiovascular disease (CVD) is the leading cause of death [1]. Bone mineral metabolism disorder is a common complication in maintenance hemodialysis patients and a non-traditional risk factor for cardiovascular events [2]. Therefore, this paper reviews the pathological features, pathogenesis, risk factors, prevention, and treatment mechanisms of cardiovascular disease in patients with chronic kidney diseases-mineral and bone diseases, and discusses the evidence of the association of cardiovascular events in chronic kidney diseases-mineral and bone diseases. A recent study also reported a relationship between uremia, fractures, and cardiovascular events. The glomerular filtration rate is reduced in patients with chronic renal insufficiency, and disorders of bone mineral metabolism are increased, several mechanisms of which increase cardiovascular events in patients with chronic renal diseases - mineral and bone diseases. Ameliorating bone mineral metabolism disorders may be a potential future target for reducing cardiovascular events in patients with chronic kidney disease - mineral and bone disorders.

Keywords

maintenance hemodialysis; Bone mineral metabolism; Cardiovascular event

Cite This Paper

Kou Wanyu, Guo Guangfeng, Gan Hua. The effect of bone mineral metabolism disorder on cardiovascular events in uremia patients. Frontiers in Medical Science Research (2023) Vol. 5, Issue 3: 29-38. https://doi.org/10.25236/FMSR.2023.050305.

References

[1] T. Isakova, T.L. Nickolas, M. Denburg, S. Yarlagadda, D.E. Weiner, O.M. Gutierrez, V. Bansal, S.E. Rosas, S. Nigwekar, J. Yee, and H. Kramer, KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am J Kidney Dis 70 (2017) 737-751.

[2] J. Lunyera, and J.J. Scialla, Update on Chronic Kidney Disease Mineral and Bone Disorder in Cardiovascular Disease. Semin Nephrol 38 (2018) 542-558.

[3] R. Vanholder, Z. Massy, A. Argiles, G. Spasovski, F. Verbeke, N. Lameire, and G. European Uremic Toxin Work, Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant 20 (2005) 1048-56.

[4] H. Fujii, [CKD-MBD and cardiovascular disease.]. Clin Calcium 29 (2019) 179-184.

[5] Y.E. Kwon, H.Y. Choi, H.J. Oh, S.Y. Ahn, D.R. Ryu, and Y.J. Kwon, Vertebral fracture is associated with myocardial infarction in incident hemodialysis patients: a Korean nationwide population-based study. Osteoporos Int 31 (2020) 1965-1973.

[6] D.E. Weiner, H. Tighiouart, E.F. Elsayed, J.L. Griffith, D.N. Salem, A.S. Levey, and M.J. Sarnak, The Framingham predictive instrument in chronic kidney disease. J Am Coll Cardiol 50 (2007) 217-24.

[7] J. Jankowski, J. Floege, D. Fliser, M. Böhm, and N. Marx, Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 143 (2021) 1157-1172.

[8] L. Di Micco, G.R. Mozzillo, and B. Cianciaruso, [Epidemiology of cardiovascular disease in CKD-MBD]. G Ital Nefrol 26 Suppl 49 (2009) S3-10.

[9] J.C. Schefold, G. Filippatos, G. Hasenfuss, S.D. Anker, and S. von Haehling, Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol 12 (2016) 610-23.

[10] K. Matsushita, S.H. Ballew, A.Y. Wang, R. Kalyesubula, E. Schaeffner, and R. Agarwal, Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol 18 (2022) 696-707.

[11] M. Ruospo, S.C. Palmer, P. Natale, J.C. Craig, M. Vecchio, G.J. Elder, and G.F. Strippoli, Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst Rev 8 (2018) Cd006023.

[12] S. Asada, K. Yokoyama, C. Miyakoshi, S. Fukuma, Y. Endo, M. Wada, T. Nomura, Y. Onishi, M. Fukagawa, S. Fukuhara, and T. Akizawa, Relationship between serum calcium or phosphate levels and mortality stratified by parathyroid hormone level: an analysis from the MBD-5D study. Clin Exp Nephrol 24 (2020) 630-637.

[13] S. Lee, and S.J. Kim, Effects of Normal Reference Range of Phosphorus and Corresponding PTH on Endothelial Function in CKD Patients. Front Med (Lausanne) 9 (2022) 935977.

[14] M.M. Popovtzer, W.F. Pinggera, M.P. Hutt, J. Robinette, C.G. Halgrimson, and T.E. Starzl, Serum parathyroid hormone levels and renal handling of phosphorus in patients with chronic renal disease. J Clin Endocrinol Metab 35 (1972) 213-8.

[15] R. Shroff, Phosphate is a vascular toxin. Pediatr Nephrol 28 (2013) 583-93.

[16] A. Galassi, A. Cupisti, A. Santoro, and M. Cozzolino, Phosphate balance in ESRD: diet, dialysis and binders against the low evident masked pool. J Nephrol 28 (2015) 415-29.

[17] K. Kono, H. Fujii, K. Watanabe, S. Goto, and S. Nishi, Relationship between parathyroid hormone and renin-angiotensin-aldosterone system in hemodialysis patients with secondary hyperparathyroidism. J Bone Miner Metab 39 (2021) 230-236.

[18] O. Gutierrez, T. Isakova, E. Rhee, A. Shah, J. Holmes, G. Collerone, H. Juppner, and M. Wolf, Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16 (2005) 2205-15.

[19] J.A. Navarro-Garcia, M. Fernandez-Velasco, C. Delgado, J.F. Delgado, O.M. Kuro, L.M. Ruilope, and G. Ruiz-Hurtado, PTH, vitamin D, and the FGF-23-klotho axis and heart: Going beyond the confines of nephrology. Eur J Clin Invest 48 (2018).

[20] S. Liabeuf, H. Okazaki, L. Desjardins, D. Fliser, D. Goldsmith, A. Covic, A. Wiecek, A. Ortiz, A. Martinez-Castelao, B. Lindholm, G. Suleymanlar, F. Mallamaci, C. Zoccali, G. London, and Z.A. Massy, Vascular calcification in chronic kidney disease: are biomarkers useful for probing the pathobiology and the health risks of this process in the clinical scenario? Nephrol Dial Transplant 29 (2014) 1275-84.

[21] S. Jeong, J.M. Oh, K.H. Oh, and I.W. Kim, Differentially expressed miR-3680-5p is associated with parathyroid hormone regulation in peritoneal dialysis patients. PLoS One 12 (2017) e0170535.

[22] S. Ulusoy, G. Ozkan, B. Guvercin, and A. Yavuz, The Relation Between Variability of Intact Parathyroid Hormone, Calcium, and Cardiac Mortality in Hemodialysis Patients. Artif Organs 40 (2016) 1078-1085.

[23] G. Cianciolo, M. Cappuccilli, F. Tondolo, L. Gasperoni, F. Zappulo, S. Barbuto, F. Iacovella, D. Conte, I. Capelli, and G. La Manna, Vitamin D Effects on Bone Homeostasis and Cardiovascular System in Patients with Chronic Kidney Disease and Renal Transplant Recipients. Nutrients 13 (2021).

[24] N.S. Akimbekov, I. Digel, D.K. Sherelkhan, and M.S. Razzaque, Vitamin D and Phosphate Interactions in Health and Disease. Adv Exp Med Biol 1362 (2022) 37-46.

[25] G. Rashid, J. Bernheim, J. Green, and S. Benchetrit, Parathyroid hormone stimulates the endothelial nitric oxide synthase through protein kinase A and C pathways. Nephrol Dial Transplant 22 (2007) 2831-7.

[26] T. Shimada, Y. Yamazaki, M. Takahashi, H. Hasegawa, I. Urakawa, T. Oshima, K. Ono, M. Kakitani, K. Tomizuka, T. Fujita, S. Fukumoto, and T. Yamashita, Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289 (2005) F1088-95.

[27] P.A. Ureña Torres, J.C. Souberbielle, and M.C. Solal, Bone Fragility in Chronic Kidney Disease Stage 3 to 5: The Use of Vitamin D Supplementation. Metabolites 12 (2022).

[28] L. Gan, and Q. Zhou, [Correlations of FGF23 and Klotho with cardiovascular injury in chronic kidney disease patients]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 42 (2017) 1058-1065.

[29] S. Yamada, and C.M. Giachelli, Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho. Bone 100 (2017) 87-93.

[30] C. Faul, A.P. Amaral, B. Oskouei, M.C. Hu, A. Sloan, T. Isakova, O.M. Gutierrez, R. Aguillon-Prada, J. Lincoln, J.M. Hare, P. Mundel, A. Morales, J. Scialla, M. Fischer, E.Z. Soliman, J. Chen, A.S. Go, S.E. Rosas, L. Nessel, R.R. Townsend, H.I. Feldman, M. St John Sutton, A. Ojo, C. Gadegbeku, G.S. Di Marco, S. Reuter, D. Kentrup, K. Tiemann, M. Brand, J.A. Hill, O.W. Moe, O.M. Kuro, J.W. Kusek, M.G. Keane, and M. Wolf, FGF23 induces left ventricular hypertrophy. J Clin Invest 121 (2011) 4393-408.

[31] A. Grabner, A.P. Amaral, K. Schramm, S. Singh, A. Sloan, C. Yanucil, J. Li, L.A. Shehadeh, J.M. Hare, V. David, A. Martin, A. Fornoni, G.S. Di Marco, D. Kentrup, S. Reuter, A.B. Mayer, H. Pavenstadt, J. Stypmann, C. Kuhn, S. Hille, N. Frey, M. Leifheit-Nestler, B. Richter, D. Haffner, R. Abraham, J. Bange, B. Sperl, A. Ullrich, M. Brand, M. Wolf, and C. Faul, Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab 22 (2015) 1020-32.

[32] R.J. Glassock, R. Pecoits-Filho, and S.H. Barberato, Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol 4 Suppl 1 (2009) S79-91.

[33] Y. Takashi, S. Wakino, H. Minakuchi, M. Ishizu, A. Kuroda, H. Shima, M. Tashiro, K. Miya, K. Okada, J. Minakuchi, S. Kawashima, M. Matsuhisa, T. Matsumoto, and S. Fukumoto, Circulating FGF23 is not associated with cardiac dysfunction, atherosclerosis, infection or inflammation in hemodialysis patients. J Bone Miner Metab 38 (2020) 70-77.

[34] X. Lu, and M.C. Hu, Klotho/FGF23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Dis (Basel) 3 (2017) 15-23.

[35] K. Asadipooya, M. Abdalbary, Y. Ahmad, E. Kakani, M.C. Monier-Faugere, and A. El-Husseini, Bone Quality in CKD Patients: Current Concepts and Future Directions - Part I. Kidney Dis (Basel) 7 (2021) 268-277.

[36] F. Aguiar, C. Meng, L. Pereira, I. Brito, and J.M. Frazão, Bone biopsy: an ally in the management of fragility fractures in chronic kidney disease. Acta Reumatol Port 43 (2018) 201-209.

[37] A. Sidibé, D. Auguste, L.C. Desbiens, C. Fortier, Y.P. Wang, S. Jean, L. Moore, and F. Mac-Way, Fracture Risk in Dialysis and Kidney Transplanted Patients: A Systematic Review. JBMR Plus 3 (2019) 45-55.

[38] S. Lee, H.J. Chung, S. Jung, H.N. Jang, S.H. Chang, H.J. Kim, and M.C. Cho, 24,25-Dihydroxy Vitamin D and Vitamin D Metabolite Ratio as Biomarkers of Vitamin D in Chronic Kidney Disease. Nutrients 15 (2023).

[39] V. Persy, and P. D'Haese, Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 15 (2009) 405-16.

[40] Q. Xiao, Y. Tang, H. Luo, S. Chen, Q. Tang, R. Chen, L. Xiong, J. Xiao, D. Hong, L. Wang, G. Li, and Y. Li, Inositol 1,4,5-trisphosphate receptor type 2 is associated with the bone-vessel axis in chronic kidney disease-mineral bone disorder. Ren Fail 45 (2023) 2162419.

[41] P. Ureña-Torres, L. D'Marco, P. Raggi, X. García-Moll, V. Brandenburg, S. Mazzaferro, A. Lieber, L. Guirado, and J. Bover, Valvular heart disease and calcification in CKD: more common than appreciated. Nephrol Dial Transplant 35 (2020) 2046-2053.

[42] S.C. Palmer, A. Teixeira-Pinto, V. Saglimbene, J.C. Craig, P. Macaskill, M. Tonelli, G. de Berardis, M. Ruospo, and G.F. Strippoli, Association of Drug Effects on Serum Parathyroid Hormone, Phosphorus, and Calcium Levels With Mortality in CKD: A Meta-analysis. Am J Kidney Dis 66 (2015) 962-71.

[43] Y.C. Hou, C.M. Zheng, H.W. Chiu, W.C. Liu, K.C. Lu, and C.L. Lu, Role of Calcimimetics in Treating Bone and Mineral Disorders Related to Chronic Kidney Disease. Pharmaceuticals (Basel) 15 (2022).

[44] K. Nitta, T. Ogawa, N. Hanafusa, and K. Tsuchiya, Recent Advances in the Management of Vascular Calcification in Patients with End-Stage Renal Disease. Contrib Nephrol 198 (2019) 62-72.

[45] M. Cozzolino, M. Gallieni, G. Chiarelli, and D. Brancaccio, Calcium and phosphate handling in peritoneal dialysis. Contrib Nephrol 150 (2006) 214-225.

[46] T. Ohtake, S. Kobayashi, M. Oka, R. Furuya, M. Iwagami, D. Tsutsumi, Y. Mochida, K. Maesato, K. Ishioka, H. Moriya, and S. Hidaka, Lanthanum carbonate delays progression of coronary artery calcification compared with calcium-based phosphate binders in patients on hemodialysis: a pilot study. J Cardiovasc Pharmacol Ther 18 (2013) 439-46.

[47] A. Zaloszyc, P. Choquet, A. Sayeh, M. Bartosova, B. Schaefer, U. Huegel, G. Aubertin-Kirch, C. Healy, F. Severac, S. Rizzo, G. Boivin, F. Schaefer, M. Fischbach, J. Bacchetta, S. Bahram, and C.P. Schmitt, Inactivation of Osteoblast PKC Signaling Reduces Cortical Bone Mass and Density and Aggravates Renal Osteodystrophy in Mice with Chronic Kidney Disease on High Phosphate Diet. Int J Mol Sci 23 (2022).

[48] Y. Taketani, F. Koiwa, and K. Yokoyama, Management of phosphorus load in CKD patients. Clin Exp Nephrol 21 (2017) 27-36.

[49] K. Yoshida, T. Mizukami, M. Fukagawa, T. Akizawa, H. Morohoshi, T. Sambe, H. Ito, H. Ogata, and N. Uchida, Target phosphate and calcium levels in patients undergoing hemodialysis: a post-hoc analysis of the LANDMARK study. Clin Exp Nephrol 27 (2023) 179-187.

[50] Y. Fang, C. Ginsberg, M. Seifert, O. Agapova, T. Sugatani, T.C. Register, B.I. Freedman, M.C. Monier-Faugere, H. Malluche, and K.A. Hruska, CKD-induced wingless/integration1 inhibitors and phosphorus cause the CKD-mineral and bone disorder. J Am Soc Nephrol 25 (2014) 1760-73.

[51] V. Cernaro, S. Calimeri, A. Laudani, and D. Santoro, Clinical Evaluation of the Safety, Efficacy and Tolerability of Lanthanum Carbonate in the Management of Hyperphosphatemia in Patients with End-Stage Renal Disease. Ther Clin Risk Manag 16 (2020) 871-880.

[52] R. Shroff, D.A. Long, and C. Shanahan, Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol 24 (2013) 179-89.

[53] I. Dudar, I. Shifris, S. Dudar, and V. Kulish, Current therapeutic options for the treatment of secondary hyperparathyroidism in end-stage renal disease patients treated with hemodialysis: a 12-month comparative study. Pol Merkur Lekarski 50 (2022) 294-298.

[54] R.S. Juang, X. Su, and I.C. Lee, Feasibility Assessment of Parathyroid Hormone Adsorption by Using Polysaccharide-Based Multilayer Film Systems. Polymers (Basel) 13 (2021).

[55] M.C. Mann, A.J. Hobbs, B.R. Hemmelgarn, D.J. Roberts, S.B. Ahmed, and D.M. Rabi, Effect of oral vitamin D analogs on mortality and cardiovascular outcomes among adults with chronic kidney disease: a meta-analysis. Clin Kidney J 8 (2015) 41-8.

[56] S. Mathew, K.S. Tustison, T. Sugatani, L.R. Chaudhary, L. Rifas, and K.A. Hruska, The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol 19 (2008) 1092-105.

[57] K.M. Swart, P. Lips, I.A. Brouwer, R. Jorde, M.W. Heymans, G. Grimnes, M.R. Grubler, M. Gaksch, A. Tomaschitz, S. Pilz, G. Eiriksdottir, V. Gudnason, L. Wamberg, L. Rejnmark, C.T. Sempos, R.A. Durazo-Arvizu, K.G. Dowling, G. Hull, Z. Skrabakova, M. Kiely, K.D. Cashman, and N.M. van Schoor, Effects of vitamin D supplementation on markers for cardiovascular disease and type 2 diabetes: an individual participant data meta-analysis of randomized controlled trials. Am J Clin Nutr 107 (2018) 1043-1053.

[58] S. Thanapluetiwong, A. Chewcharat, K. Takkavatakarn, K. Praditpornsilpa, S. Eiam-Ong, and P. Susantitaphong, Vitamin D supplement on prevention of fall and fracture: A Meta-analysis of Randomized Controlled Trials. Medicine (Baltimore) 99 (2020) e21506.

[59] J. Dong, S.L. Wong, C.W. Lau, H.K. Lee, C.F. Ng, L. Zhang, X. Yao, Z.Y. Chen, P.M. Vanhoutte, and Y. Huang, Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J 33 (2012) 2980-90.

[60] T. Sun, and X. Yu, FGF23 Actions in CKD-MBD and other Organs During CKD. Curr Med Chem 30 (2023) 841-856.

[61] F. Bellone, M. Cinquegrani, R. Nicotera, N. Carullo, A. Casarella, P. Presta, M. Andreucci, G. Squadrito, G. Mandraffino, M. Prunestì, C. Vocca, G. De Sarro, D. Bolignano, and G. Coppolino, Role of Vitamin K in Chronic Kidney Disease: A Focus on Bone and Cardiovascular Health. Int J Mol Sci 23 (2022).

[62] M. Fusaro, F. Tondolo, L. Gasperoni, G. Tripepi, M. Plebani, M. Zaninotto, T.L. Nickolas, M. Ketteler, A. Aghi, C. Politi, G. La Manna, M.L. Brandi, S. Ferrari, M. Gallieni, M.C. Mereu, and G. Cianciolo, The Role of Vitamin K in CKD-MBD. Curr Osteoporos Rep 20 (2022) 65-77.

[63] H. Wang, L. Li, N. Zhang, and Y. Ma, Vitamin K2 Improves Osteogenic Differentiation by Inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 Clone 8 Cells. Nutrients 14 (2022).

[64] E. Zaragatski, J. Grommes, L.J. Schurgers, S. Langer, L. Kennes, M. Tamm, T.A. Koeppel, J. Kranz, T. Hackhofer, K. Arakelyan, M.J. Jacobs, and M. Kokozidou, Vitamin K antagonism aggravates chronic kidney disease-induced neointimal hyperplasia and calcification in arterialized veins: role of vitamin K treatment? Kidney Int 89 (2016) 601-11.