Welcome to Francis Academic Press

Academic Journal of Materials & Chemistry, 2023, 4(2); doi: 10.25236/AJMC.2023.040206.

Improving the performance of perovskite solar cells by electron beam evaporation processing

Author(s)

Dandan Chen, Tao Xue

Corresponding Author:
Dandan Chen
Affiliation(s)

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an, China

Abstract

Electron transport layer (ETL) plays an important role in the development of high performance perovskite solar cells (PSC). Here, we first compared the optical and surface morphology characteristics of titanium dioxide (TiO2) thin films prepared by electron beam evaporation (EB) and hydrothermal (HT) method, as well as the device performance of perovskite solar cells, and then studied the effect of electron beam evaporation TiO2 film thickness on the performance of perovskite solar cells. It was found that the morphology of TiO2 ETL prepared by electron beam evaporation was more uniform and compact, and the surface root mean square roughness was lower than that of hydrothermal method, and the quality of the film was better. And the average transmittance of TiO2 ETL prepared by electron beam evaporation was 94.67%. Compared with hydrothermal method, the PCE of TiO2-based PSC devices based on electron beam evaporation was increased by 60%. The thickness of TiO2 ETL was adjusted by electron beam evaporation, and a good surface morphology of the film was obtained. When the thickness was 75 nm, the ETL of the prepared PSC showed the best device performance, and the PCE reached 9.00%, showing excellent performance.

Keywords

TiO2, electron transport layer, CsPbI3-xBrx perovskite solar cell

Cite This Paper

Dandan Chen, Tao Xue. Improving the performance of perovskite solar cells by electron beam evaporation processing. Academic Journal of Materials & Chemistry (2023) Vol. 4, Issue 2: 31-37. https://doi.org/10.25236/AJMC.2023.040206.

References

[1] K.O. Brinkmann, J. Zhao, N. Pourdavoud, T. Becker, T. Hu, S. Olthof, K. Meerholz, L. Hoffmann, T. Gahlmann, R. Heiderhoff, M.F. Oszajca, N.A. Luechinger, D. Rogalla, Y. Chen, B. Cheng, T. Riedl, Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells, Nature Communications, 8 (2017) 13938.

[2] S. Chen, X. Wen, S. Huang, F. Huang, Y.-B. Cheng, M. Green, A. Ho-Baillie, Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite, Solar Rrl, 1 (2017) 1600001.

[3] Y. Guo, X. Yin, J. Liu, S. Wen, Y. Wu, W. Que, Inorganic CsPbIBr2-Based Perovskite Solar Cells: Fabrication Technique Modification and Efficiency Improvement, Solar Rrl, 3 (2019) 9.

[4] W. Qiu, M. Buffiere, G. Brammertz, U.W. Paetzold, L. Froyen, P. Heremans, D. Cheyns, High efficiency perovskite solar cells using a PCBM/ZnO double electron transport layer and a short air-aging step, Organic Electronics, 26 (2015) 30-35.

[5] Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)(2)PbI3-based perovskite solar cells, Nature Energy, 2 (2017) 1-7.

[6] H. Tan, A. Jain, O. Voznyy, X. Lan, F.P.G. de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Science, 355 (2017) 722-726.

[7] Y. Ma, Q. Zhao, A strategic review on processing routes towards scalable fabrication of perovskite solar cells, Journal of Energy Chemistry, 64 (2022) 538-560.

[8] W.L. Lachore, D.M. Andoshe, M.A. Mekonnen, F.G. Hone, Recent progress in electron transport bilayer for efficient and low-cost perovskite solar cells: a review, Journal of Solid State Electrochemistry, 26 (2022) 295-311.

[9] C. Zhen, T. Wu, R. Chen, L. Wang, G. Liu, H.-M. Cheng, Strategies for Modifying TiO2 Based Electron Transport Layers to Boost Perovskite Solar Cells, Acs Sustainable Chemistry & Engineering, 7 (2019) 4586-4618.

[10] D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu, J. Feng, X. Ren, G. Fang, S. Priya, S.F. Liu, High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2, Nat Commun, 9 (2018) 3239.

[11] W. Li, M.U. Rothmann, A. Liu, Z. Wang, Y. Zhang, A.R. Pascoe, J. Lu, L. Jiang, Y. Chen, F. Huang, Y. Peng, Q. Bao, J. Etheridge, U. Bach, Y.-B. Cheng, Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells, Advanced Energy Materials, 7 (2017) 1700946.

[12] J.S. Niezgoda, B.J. Foley, A.Z. Chen, J.J. Choi, Improved Charge Collection in Highly Efficient CsPbBrI2 Solar Cells with Light-Induced Dealloying, Acs Energy Letters, 2 (2017) 1043-1049.

[13] Y. Jing, X. Liu, D. Wang, R. Li, Y. Xu, Z. Yan, W. Sun, J. Wu, Z. Lan, High-efficiency and ultraviolet stable carbon-based CsPbIBr2 solar cells from single crystal three-dimensional anatase titanium dioxide nanoarrays with ultraviolet light shielding function, Journal of colloid and interface science, 616 (2022) 201-209.

[14] Y. Li, Y. Wang, T. Zhang, S. Yoriya, P. Kumnorkaew, S. Chen, X. Guo, Y. Zhao, Li dopant induces moisture sensitive phase degradation of an all-inorganic CsPbI2Br perovskite, Chemical Communications, 54 (2018) 9809-9812. 

[15] W.J. Potscavage, Jr., A. Sharma, B. Kippelen, Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage, Accounts of Chemical Research, 42 (2009) 1758-1767.

[16] D.-L. Li, W. Si, W.-C. Yang, Y. Yao, X.-Y. Hou, C.-Q. Wu, Spike in transient photocurrent of organic solar cell: Exciton dissociation at interface, Physics Letters A, 376 (2012) 227-230.

[17] L. Kavan, N. Tetreault, T. Moehl, M. Graetzel, Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells, Journal of Physical Chemistry C, 118 (2014) 16408-16418.

[18] F. Wang, Y. Zhang, M. Yang, J. Du, L. Yang, L. Fan, Y. Sui, X. Liu, J. Yang, Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer, Journal of Power Sources, 440 (2019) 227157.

[19] C. Rho, J.-H. Min, J.S. Suh, Barrier Layer Effect on the Electron Transport of the Dye-Sensitized Solar Cells Based on TiO2 Nanotube Arrays, Journal of Physical Chemistry C, 116 (2012) 7213-7218.

[20] S.P. Nehra, S. Chander, A. Sharma, M.S. Dhaka, Effect of thermal annealing on physical properties of vacuum evaporated In2S3 buffer layer for eco-friendly photovoltaic applications, Materials Science in Semiconductor Processing, 40 (2015) 26-34.

[21] K. Mahmood, B.S. Swain, A. Amassian, Double-layered ZnO nanostructures for efficient perovskite solar cells, Nanoscale, 6 (2014) 14674-14678.