Welcome to Francis Academic Press

International Journal of New Developments in Engineering and Society, 2017, 1(3); doi: 10.25236/IJNDES.17339.

Effect of CeO2 Doping on Phase Structure of AlCoCuFeMnNi High Entropy Alloys


Zhi-xin Wang1, Ming-xing Ma1, Jia-chen Zhou1, Cun Liang1, Cong Zhao2

Corresponding Author:
Ming-xing Ma

1. School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, China
2. School of Chemistry and Environmental Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China


AlCoCuFeMnNi high-entropy alloy was fabricated by non-consumable arc remelter. AlCoCuFeMnNi and AlCoCuFeMnNi + 1wt% CeO2 alloys were investigated by XRD prepared on their phase structure. The results show that AlCoCuFeMnNi alloy has BCC1+BCC2 dual phase structure. 1wt% CeO2 addition improves the diffraction peak of AlCoCuFeMnNi alloy. The mixing entropy is 13.38J·mol-1·K-1, the mixing enthalpy is -2.56kJ·mol-1, the atomic radius difference is 0.15, and the Gibbs free energy is -35.73kJ·mol-1 for AlCoCuFeMnNi high-entropy alloy.


High-entropy alloy; AlCoCuFeMnNi; Phase structure; Microstructure

Cite This Paper

Zhi-xin Wang, Ming-xing Ma, Jia-chen Zhou, Cun Liang, Cong Zhao. Effect of CeO2 Doping on Phase Structure of AlCoCuFeMnNi High Entropy Alloys.  International Journal of New Developments in Engineering and Society (2017) Vol.1, Num.3: 129-132.


[1]J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004,6: 299-303.
[2]C. Zhang, B. Wu, Q. Wang, D. Chen, and P. Dai, Microstructure and Properties of FeCrNiCoMnBx High-Entropy Alloy Coating Prepared by Laser Cladding, Rare Metal Mat. Eng., 2017,9:1230-1234.
[3]D. Choudhuri, B. Gwalani, S. Gorsse, C. V. Mikler, R. V. Ramanujan, M. A. Gibson, and R. Banerjee, Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys, Scripta Mater., 2017, 127: 186-190.
[4]D. Li, C. Li, T. Feng, Y. Zhang, G. Sha, J. J. Lewandowski, P. K. Liaw, and Y. Zhang, High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures, Acta Mater., 2017, 123: 285-294.
[5]C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, and Y. Wang, CoCrFeNi(W1−xMox) high- entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot-pressing sintering, Mater. Des., 2017, 117:193-202.
[6]S. Mohanty, T. N. Maity, S. Mukhopadhyay, S. Sarkar, N. P. Gurao, S. Bhowmick, and K. Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties, Mater. Sci. Eng.: A, 2017, 679: 299-313
[7]Y. Tan, J. Li, J. Wang, and H. Kou, Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high entropy alloy, Intermetallics, 2017, 85:74-79.
[8]M.X. Ma, D.C. Zhu, M.J. Tu. The effect of Eu2+ doping concentration on luminescence properties of BaAl2Si2O8:Eu2+ blue phosphor, Acta Phys. Sin. -Ch. Ed. 58 (2009) :5826-5830
[9]M. X. Ma, D. C. Zhu, C. Zhao, et al. Effect of Sr2+-doping on structure and luminescence properties of BaAl2Si2O8:Eu2+ phosphors, Opt. Commu. 285(2012):665-668.
[10]G.H. Meng, X. Lin, H. Xie, et al, The effect of Cu rejection in laser forming of AlCoCrCuFeNi/Mg composite coating, Mater. Des. 108(2016): 157-167
[11]G. Li, D.H. Xiao, P.F. Yu, et al, Equation of state of an AlCoCrCuFeNi high-entropy alloy, JOM, 67(2015):2310-2313
[12]Y. Deng, C.C. Tasan, K.G. Pradeep, et al, Design of a twinning-induced plasticity high entropy alloy, Acta Mater. 94(2015):124-133
[13]M.J. Yao, K.G. Pradeep, C.C. Tasan, et al, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility, Scripta Mater. s72-73 (2014) :5-8
[14]R.S. Ganji, P.S. Karthik, K.B.S. Rao, et al, strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods, Acta Mater. 125(2017):58-68
[15]Y.J. Zhou, Y. Zhang, Y.L. Wang, et al, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett.  90 (2007):181904
[16]T.M. Yue, H. Xie, X. Lin, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates, J. Alloys Compd. 587(2014):588-593
[17]A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46(2005): 2817-2829.
[18]J. M. Zhu, H.F. Zhang, H.M. Fu, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys, J. Alloys Compd. 497(2010):52-56
[19]L.H. Wen, H.C. Kou, J.S. Li, et al. Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17(2009):266-269
[20]Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM, 64 (2012) :830-838
[21]Y. Zhang, Y. Zhou, J. Lin, et al, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10(2010) :534-538
[22]Q.Y. Zhai, C. Jia, Z.X. Kang, et al. Microstructure and capacitor discharge\par welding characteristics of quenched Cu25Al10Ni25Fe20Co20 high-entropy alloy foils, Acta Metall. Sin. 47 (2011) :1378-1381