Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(8); doi: 10.25236/IJFM.2023.050807.

Advances in exosomes for cancer therapy

Author(s)

Jaewon Choi1, Peiqi Lin2

Corresponding Author:
Jaewon Choi
Affiliation(s)

1Oxford International College, Oxford, UK

2Shenghua Zizhu Academy, Shanghai, China

Abstract

Over the past few decades, cancer research has advanced substantially reaveling illumination on previously enigmatic aspects of cancer biology and paving the way for revolutionary therapeutic approachces. However, the resources and methods of treating cancers are still less in number which people still felt threatened by it passively. There is a nanosized  extracellular vesicle (EV) called exosome have been widely used for treating cancer as well as research of it in nowadays, which contains and transports proteins, lipids, and nucleic acids. We discuss how exosome is preserved currently which uses different methods and techiniques. Next, we compared what kind of technology could be the most efficient in purifying exosome. We also point out that exosomes can either suppress or promote the cancer cells, depending on what they carrying and what kinds of enviorment they in. In this comprehensive review, we will focus on the mechanism of cargo sorting and how exosome is created and characterised from endosomes, which contains how they distribute specific cargo and how exosome carries those. Eventually, we provide a brief view of clinical courses and application of exosomes in canaer therapy in recent years and prospects for exosomes being used in further medical research.

Keywords

Exosomes, Extracellular vesicle, Cancer cells, Purifying exosome, Cargo sorting

Cite This Paper

Jaewon Choi, Peiqi Lin. Advances in exosomes for cancer therapy. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 8: 55-59. https://doi.org/10.25236/IJFM.2023.050807.

References

[1] Zhang, Y., Liu, Y., Liu, H., & Tang, W. H. (2019). Exosomes: biogenesis, biologic function and clinical potential. Cell and Bioscience, 9(1). 

[2] Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 262(19), 9412-9420. 

[3] Dilsiz, N. (2020). Role of exosomes and exosomal microRNAs in cancer. Future science OA, 6(4), FSO465. 

[4] Simpson, R. J., Lim, J. W., Moritz, R. L., & Mathivanan, S. (2009). Exosomes:proteomic insights and diagnostic potential. Expert review of proteomics, 6(3), 267-283. 

[5] Vidal, M., Sainte‐Marie, J., Philippot, J. R., &Bienvenue, A. (1989). Asymmetric distribution of phospholipids in the membrane of vesicles released during in vitro maturation of guinea pig reticulocytes: evidence precluding a role for “aminophospholipid translocase”. Journal of cellular physiology, 140(3), 455-462. 

[6] Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol, 9, 654-659. 

[7] Waldenström, A., Gennebäck, N., Hellman, U., & Ronquist, G. (2012). Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PloS one, 7(4), e34653. 

[8] Shao, J., Zaro, J., & Shen, Y. (2020). Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. International journal of nanomedicine, 9355-9371. 

[9] Zhang, L., Wu, X., Luo, C., Chen, X., Yang, L., Tao, J., & Shi, J. (2013). The 786-0 renal cancer cell-derived exosomes promote angiogenesis by downregulating the expression of hepatocyte cell adhesion molecule. Molecular medicine reports, 8(1), 272-276. 

[10] Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75, 193-208. 

[11] Raghu, kalluri, Valeries, S. Lebleu The biology, function, and biomedical applications of exosomes. DOI:10. 1126/science. aau6977.

[12] Wei, H., Chen, Q., Lin, L., Sha, C., Li, T., Liu, Y., . . . & Zhu, X. (2021). Regulation of exosome production and cargo sorting. International journal of biological sciences, 17(1), 163. 

[13] Farooqi, A. A., Desai, N. N., Qureshi, M. Z., Librelotto, D. R. N., Gasparri, M. L., Bishayee, A., . . . & Daglia, M. (2018). Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnology advances, 36(1), 328-334. 

[14] Moreno-Gonzalo, O., Fernandez-Delgado, I., & Sanchez-Madrid, F. (2018). Post-translational add-ons mark the path in exosomal protein sorting. Cellular and molecular life sciences, 75, 1-19. 

[15] Wu, F., Li, F., Lin, X., Xu, F., Cui, R. R., Zhong, J. Y., . . . & Mo, Z. H. (2020). Exosomes increased angiogenesis in papillary thyroid cancer microenvironment. Endocrine-Related Cancer, 27(3), X5-X5. 

[16] Li, H., Qiang, Y., Wang, L., Liu, C., Yang, N., Xiong, L., . . . & Wu, H. (2014). Effect of lipopolysaccharide on the characteristics of endothelial progenitor cells from bone marrow in mice. Molecular Medicine Reports, 9(2), 427-434. 

[17] Doyle, L. M., & Wang, M. Z. Cells 2019, 8, 727. 

[18] Jeppesen, D. K., Hvam, M. L., Primdahl-Bengtson, B., Boysen, A. T., Whitehead, B., Dyrskjøt, L., . . . & Ostenfeld, M. S. (2014). Comparative analysis of discrete exosome fractions obtained by differential centrifugation. Journal of extracellular vesicles, 3(1), 25011. 

[19] Chen, J., Li, P., Zhang, T., Xu, Z., Huang, X., Wang, R., & Du, L. (2022). Review on strategies and technologies for exosome isolation and purification. Frontiers in bioengineering and biotechnology, 9, 811971. 

[20] Brownlee, Z., Lynn, K. D., Thorpe, P. E., & Schroit, A. J. (2014). A novel “salting-out” procedure for the isolation of tumor-derived exosomes. Journal of immunological methods, 407, 120-126. 

[21] Bahr, M. M., Amer, M. S., Abo-El-Sooud, K., Abdallah, A. N., & El-Tookhy, O. S. (2020). Preservation techniques of stem cells extracellular vesicles: A gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. International journal of veterinary science and medicine, 8(1), 1-8. 

[22] Jing, Y., Bian, Y., Hu, Z., Wang, L., & Xie, X. Q. S. (2018). Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. The AAPS journal, 20, 1-10. 

[23] Kusuma, G. D., Barabadi, M., Tan, J. L., Morton, D. A., Frith, J. E., & Lim, R. (2018). To protect and to preserve: novel preservation strategies for extracellular vesicles. Frontiers in Pharmacology, 9, 1199. 

[24] Akers, J. C., Ramakrishnan, V., Yang, I., Hua, W., Mao, Y., Carter, B. S., & Chen, C. C. (2016). Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomarkers, 17(2), 125-132. 

[25] Zhang, F., Guo, J., Zhang, Z., Qian, Y., Wang, G., Duan, M., . . . & Jiang, X. (2022). Mesenchymal stem cell-derived exosome: A tumor regulator and carrier for targeted tumor therapy. Cancer Letters, 526, 29-40. 

[26] Xu, M., Yang, Q., Sun, X., & Wang, Y. (2020). Recent advancements in the loading and modification of therapeutic exosomes. Frontiers in Bioengineering and Biotechnology, 8, 586130. 

[27] Wang, M., Ji, S., Shao, G., Zhang, J., Zhao, K., Wang, Z., & Wu, A. (2018). Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clinical and Translational Oncology, 20, 906-911. 

[28] Huang, Z., Keramat, S., Izadirad, M., Chen, Z. S., & Soukhtanloo, M. (2022). The Potential Role of Exosomes in the Treatment of Brain Tumors, Recent Updates and Advances. Frontiers in Oncology, 12, 869929.