Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(8); doi: 10.25236/IJFM.2023.050814.

Exploration of IgA Nephropathy from the Perspective of Gd-IgA1 and Complement Alternative Pathway

Author(s)

Qijun Tian1, Jian Shi2

Corresponding Author:
Jian Shi
Affiliation(s)

1Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China

2Nephropathy Department 1, Shaanxi Academy of Traditional Chinese Medicine, Xi’an, Shaanxi, 710003, China

Abstract

IgA nephropathy is the most common primary glomerular diseases globally, affecting approximately 1.3% of the global population. The pathogenesis is incompletely understood and it has a poor prognosis. The features of IgA nephropathy is IgA deposition in the glomerular mesangium, which initiates inflammatory cytokine release and complement activation. Previous studies have shown that the type of IgA deposited in the glomerulus is Gd-IgA1 and is involved in the occurrence and development of IgA nephropathy. At present, a large number of studies have shown that the activation of complement pathway plays an important role in the pathogenesis of IgA nephropathy, and is related to disease progress, especially the Lectin pathway and alternative pathway. This article mainly describes the relationship between alternative pathways and Galactose deficient IgA1 (Gd-IgA1) in the occurrence and development of IgA nephropathy.

Keywords

IgA nephropathy; Complement; Alternative pathway; Galactose-deficient IgA1

Cite This Paper

Qijun Tian, Jian Shi. Exploration of IgA Nephropathy from the Perspective of Gd-IgA1 and Complement Alternative Pathway. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 8: 100-108. https://doi.org/10.25236/IJFM.2023.050814.

References

[1] Berthoux C F, Mohey H, Afiani A. Natural History of Primary IgA Nephropathy[J]. Seminars in Nephrology, 2007, 28(1). 

[2] Berger J, Hinglais N. Intercapillary deposits of IgA-IgC[J]. Journal of the American Society of Nephrology: JASN, 2000, 11(10). 

[3] Floege, Jürgen., Rauen, Thomas., Tang, Sydney C W, et al. Current treatment of IgA nephropathy. Seminars in immunopathology, 2021, 43(5):717-728.

[4] Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy[J]. J Am Soc Nephrol. 2011(22):1795–803. 

[5] Yue X, Lina L, Yaru Z, et al. C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy[J]. BMC nephrology, 2020, 21(1). 

[6] Gharavi AG, Moldoveanu Z, Wyatt RJ, et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy[J]. J Am Soc Nephrol. 2008, 19:1008–14. 

[7] Suzuki, Keiichiro, Kawamoto, Shimpei, Maruya, Mikako, et al. GALT: organization and dynamics leading to IgA synthesis [J]. Advances in immunology, 2010, 107. 

[8] Jonathan B, Richard L, Jens K, et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy[J]. Kidney international, 2022. 

[9] Kokubo T, Hiki Y, Iwase H, et al. Evidence for involvement of IgA1 hinge glycopeptide in the IgA1-IgA1 interraction in IgA nephropathy[J]. J Am Soc Nephrol 1997; 8: 915–919. 

[10] Jan N, Milan T, Karel M, et al. IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells[J]. Kidney international, 2005, 67(2). 

[11] P D G, Karen M, David W, et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1 [J]. Journal of the American Society of Nephrology : JASN, 2017, 28(7). 

[12] Qin Wei, Zhong Xiang, Fan Junming, et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy [J]. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 2008, 23(5):1608-14. 

[13] Yamada Koshi, Kobayashi Noriyoshi, Ikeda Tomomi, et al. Down-regulation of core 1 beta1, 3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1[J]. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 2010, 25(12):3890-7. 

[14] Lin Jiaru, et al. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells [J]. Renal failure, 2018, 40(1):60-67. 

[15] Pers Jacques-Olivier, Daridon Capucine, Devauchelle Valérie, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases [J]. Annals of the New York Academy of Sciences, 2005, 1050:34-9. 

[16] McCarthy, Douglas D., Kujawa, Julie. , Wilson, Cheryl. , et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy[J]. The Journal of clinical investigation, 2011, 121(10). 

[17] Li Weiwei, Peng Xiaofei, Liu Yuyuan, et al. TLR9 and BAFF: their expression in patients with IgA nephropathy [J]. Molecular medicine reports, 2014, 10(3):1469-74. 

[18] Xin Gang, Shi Wei, Xu Lixia, et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features[J]. Journal of nephrology, 2012, 26(4). 

[19] Makita Yuko, Suzuki Hitoshi, Kano Toshiki, et al. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy[J]. Kidney international, 2019, 97(2):340-349. 

[20] Zheng N, Xie K, Ye H, Dong Y, et al. TLR7 in B cells promotes renal inflammation and Gd-IgA1 synthesis in IgA nephropathy [J]. JCI Insight. 2020 Jul 23; 5(14):e136965. 

[21] Hashimoto, Azusa. , Suzuki, Yusuke. , Suzuki, Hitoshi. , et al. Determination of severity of murine IgA nephropathy by glomerular complement activation by aberrantly glycosylated IgA and immune complexes [J]. The American journal of pathology, 2012, 181(4). 

[22] Xie Minhua, et al. Predictive prognostic value of glomerular C3 deposition in IgA nephropathy[J]. Journal of nephrology, 2022, 36(2). 

[23] Schmitt, Roland. , Ståhl, Anne-Lie. , Olin, Anders I. , et al. The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M Protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy[J]. Journal of immunology (Baltimore, Md. : 1950), 2014, 193(1). 

[24] Russell, M W. , Mansa, B. . Complement-fixing properties of human IgA antibodies. Alternative pathway complement activation by plastic-bound, but not specific antigen-bound, IgA[J]. Scandinavian journal of immunology, 1989, 30(2):175-83. 

[25] Dong Ruijuan, Bai Ming, Zhao Jin, et al. A Comparative Study of the Gut Microbiota Associated With Immunoglobulin a Nephropathy and Membranous Nephropathy[J]. Frontiers in cellular and infection microbiology, 2020, 10. 

[26] Weng Junxiong, Liu Cuiyun, Ding Xiaoyan, et al. Comparison of Gut microbiota between IgA nephropathy patients and healthy people[J]. Chinese Journal of Microecology, 2021, 33(10):1126-1133. 

[27] Coppo R. The intestine-renal connection in Ig A nephropathy[J]. Nephrol Dial Transplant, 2015, 30:360-366. 

[28] Tang Yuyan, Tang Yuyan, Zhu Yifan, et al. Gut Dysbiosis and Intestinal Barrier Dysfunction Promotes IgA Nephropathy by Increasing the Production of Gd-IgA1[J]. Frontiers in medicine, 2022. 

[29] Davies, K A. . Complement[J]. Bailliere's clinical haematology, 1991, 4(4):927-55. 

[30] Walport, M J. . Complement. First of two parts[J]. The New England journal of medicine, 2001, 344(14). 

[31] Merle, Nicolas S. , Church, Sarah Elizabeth. , Fremeaux-Bacchi, Veronique. , et zl. Complement System Part I - Molecular Mechanisms of Activation and Regulation[J]. Frontiers in immunology, 2015, 6:262. 

[32] Kjaer, Troels R. , Thiel, Steffen. , Andersen, Gregers R. . Toward a structure-based comprehension of the lectin pathway of complement[J]. Molecular immunology, 2013, 56(4). 

[33] Onda K, Ohi H, Tamano M, et al Hypercomplemia in adult patients with IgA nephropathy [J]. J Clin Lab Anal, 2007, 21(2): 77-84. 

[34] Tanaka C, Suhara Y, Kikkawa Y. Circulating immune complexes and complement breakdown products in childhood IgA nephropathy[J]. Nippon Jinzo Gakkai Shi, 1991, 33(3) : 709-717. 

[35] Wang Zhen, Xu Zhe, Liu Guohui. The relationship between strength of complement C3 deposition in mesangial regions and degree of disease in patients with IgA nephropathy[J]. The Bethune Journal of Medicine, 2020, 18(05):429-432. 

[36] Kim SJ, Koo HM, Lim BJ, et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcomes in patients with IgA nephropathy [J]. PLoS One, 2012, 7(7):e40495. 

[37] Pickering MC, D’Agati VD, Nester CM, et al. C3 glomerulopathy: Consensus report[J]. Kidney Int, 2013, 84( 5) : 1079-1089. 

[38] Medjeral-Thomas, Nicholas R. , Cook, H Terence. , Pickering, Matthew C. . Complement activation in IgA nephropathy[J]. Seminars in immunopathology, 2021, 43(5):679-690. 

[39] Hong-Joo L, Young S C, Hwan K J, et al. Association of C1q deposition with renal outcomes in IgA nephropathy[J]. Clinical nephrology, 2013, 80(2). 

[40] Maillard, Nicolas. , Wyatt, Robert J. , Julian, Bruce A. , et al. Current Understanding of the Role of Complement in IgA Nephropathy[J]. Journal of the American Society of Nephrology : JASN, 2015, 26(7):1503-12. 

[41] Tortajada A, Gutierrez E, Pickering C M, et al. The role of complement in IgA nephropathy[J]. Molecular Immunology, 2019, 114:123-132. 

[42] Peter G, Ninette G, Katrine P, et al. A journey through the lectin pathway of complement-MBL and beyond[J]. Immunological reviews, 2016, 274(1):74-97. 

[43] Xia N, Shuyu Z, Chen S, et al. Urinary complement proteins in IgA nephropathy progression from a relative quantitative proteomic analysis[J]. PeerJ, 2023, 11. 

[44] Dongqing W, Changwei W, Sipei C, et al. Urinary complement profile in IgA nephropathy and its correlation with the clinical and pathological characteristics[J]. Frontiers in immunology, 2023, 14. 

[45] Wang Weiqing. The value of serum Gd-IgA 1, complement C3, and complement regulatory proteins in the diagnosis and disease evaluation of IgA nephropathy[D]. Ningbo University, 2021. 

[46] Moldoveanu, Z, Wyatt, R J, Lee, J Y. , Tomana, M. , et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels[J]. Kidney international, 2007, 71(11):1148-54. 

[47] Zhang Kai, Li Qiongqiong, Zhang Yaru, et al. Clinical Significance of Galactose-Deficient IgA1 by KM55 in Patients with IgA Nephropathy[J]. Kidney & blood pressure research, 2019, 44(5):1196-1206. 

[48] Juan YT, Chiang WC, Lin WC, et al. Associations between biomarkers of complement activation, galactose-deficient IgA1 antibody and the updated Oxford pathology classification of IgA nephropathy[J]. J Clin Med. 2022;11:4231. 

[49] Chiu YL, Lin WC, Shu KH, et al. Alternative complement pathway is activated and associated with galactose-deficient IgA1 antibody in IgA nephropathy patients[J]. Front Immunol , 2021, 12:638309.