Welcome to Francis Academic Press

Academic Journal of Computing & Information Science, 2023, 6(9); doi: 10.25236/AJCIS.2023.060916.

Survey of Skinning Method in 3D Character Animation


Jinning Zhang

Corresponding Author:
Jinning Zhang

Computer Science, King’s College London, London, United Kingdom


Character skinning is one of the most important tasks in 3D animations, games design and visual effects in film production. With the development of 3D animations, a good way of skinning becomes an important role. With the increasing requirements of skinning, many new methods and techniques have emerged. The most core part is real-time shape deformations, to make the skin of characters to act more realistic, no informal deformation should happen. This paper introduces skinning technique in 4 categories: geometric methods, physical methods, example based approaches, energy based methods. A brief discussion and comparison of these methods are provided in the end.


Character animation, Skinning, Physical method, Energy, Geometric approach

Cite This Paper

Jinning Zhang. Survey of Skinning Method in 3D Character Animation. Academic Journal of Computing & Information Science (2023), Vol. 6, Issue 9: 110-114. https://doi.org/10.25236/AJCIS.2023.060916.


[1] Bender, J., Dequidt, J., Duriez, C., & Zachmann, G. (2013). Physically-based character skinning. Virtual Reality Interactions and Physical Simulations (VRIPhys) nov.

[2] Komaritzan, M., & Botsch, M. (2018). Projective skinning. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 1(1), 1-19.

[3] Abu Rumman, N., & Fratarcangeli, M. (2015, September). Position‐based skinning for soft articulated characters. In Computer Graphics Forum (Vol. 34, No. 6, pp. 240-250).

[4] Kim, T., & James, D. L. (2011, August). Physics-based character skinning using multi-domain subspace deformations. In Proceedings of the 2011 ACM SIGGRAPH/eurographics symposium on computer animation (pp. 63-72).

[5] Gao, M., Mitchell, N., & Sifakis, E. (2014). Steklov-Poincaré Skinning. In Symposium on Computer Animation (pp. 139-148).

[6] Turchet, F., Fryazinov, O., & Romeo, M. (2015, November). Extending implicit skinning with wrinkles. In Proceedings of the 12th European Conference on Visual Media Production (pp. 1-6).

[7] Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., & Cani, M. P. (2014). Robust iso-surface tracking for interactive character skinning. ACM Transactions on Graphics (TOG), 33(6), 1-11.

[8] Benchekroun, O., Zhang, J. E., Chaudhuri, S., Grinspun, E., Zhou, Y., & Jacobson, A. (2023). Fast Complementary Dynamics via Skinning Eigenmodes. arXiv preprint arXiv:2303.11886.

[9] Vaillant, R., Barthe, L., Guennebaud, G., Cani, M. P., Rohmer, D., Wyvill, B., ... & Paulin, M. (2013). Implicit skinning: Real-time skin deformation with contact modeling. ACM Transactions on Graphics (TOG), 32(4), 1-12.

[10] Lee, G. S., Lin, A., Schiller, M., Peters, S., McLaughlin, M., Hanner, F., & Studios, W. D. A. (2013, July). Enhanced dual quaternion skinning for production use. In SIGGRAPH Talks (pp. 9-1).

[11] McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., & Sifakis, E. (2011). Efficient elasticity for character skinning with contact and collisions. In ACM SIGGRAPH 2011 papers (pp. 1-12).

[12] Kavan, L., Collins, S., Žára, J., & O'Sullivan, C. (2008). Geometric skinning with approximate dual quaternion blending. ACM Transactions on Graphics (TOG), 27(4), 1-23.

[13] James, D. L., & Twigg, C. D. (2005). Skinning mesh animations. ACM Transactions on Graphics (TOG), 24(3), 399-407.

[14] Forstmann, S., & Ohya, J. (2006, September). Fast Skeletal Animation by skinned Arc-Spline based Deformation. In Eurographics (Short Presentations) (pp. 1-4).

[15] Le, B. H., & Lewis, J. P. (2019). Direct delta mush skinning and variants. ACM Trans. Graph., 38(4), 1-13.

[16] Rohmer, D., Hahmann, S., & Cani, M. P. (2009, August). Exact volume preserving skinning with shape control. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 83-92).

[17] Rumman, N. A., & Fratarcangeli, M. (2014, May). Position based skinning of skeleton-driven deformable characters. In Proceedings of the 30th Spring Conference on Computer Graphics (pp. 83-90).

[18] Stavness, I., Sánchez, C. A., Lloyd, J., Ho, A., Wang, J., Fels, S., & Huang, D. (2014). Unified skinning of rigid and deformable models for anatomical simulations. In SIGGRAPH Asia 2014 Technical Briefs (pp. 1-4).

[19] Angelidis, A., & Singh, K. (2007, August). Kinodynamic skinning using volume-preserving deformations. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 129-140).

[20] Bang, S., & Lee, S. H. (2018). Computation of skinning weight using spline interface. In ACM SIGGRAPH 2018 Posters (pp. 1-2).

[21] Yang, X., & Zheng, J. (2012). Approximate T-spline surface skinning. Computer-Aided Design, 44(12), 1269-1276.

[22] Nasri, A., Sinno, K., & Zheng, J. (2012). Local T-spline surface skinning. The Visual Computer, 28, 787-797.

[23] von Funck, W., Theisel, H., & Seidel, H. P. (2008). Volume-preserving Mesh Skinning. In VMV (pp. 409-414).

[24] Chai, M., Zheng, C., & Zhou, K. (2016). Adaptive skinning for interactive hair-solid simulation. IEEE transactions on visualization and computer graphics, 23(7), 1725-1738.

[25] Oh, M. J., Roh, M. I., & Kim, T. W. (2018). Local T-spline surface skinning with shape preservation. Computer-Aided Design, 104, 15-26.

[26] Li, Y., Chen, W., Cai, Y., Nasri, A., & Zheng, J. (2015). Surface skinning using periodic T-spline in semi-NURBS form. Journal of Computational and Applied Mathematics, 273, 116-131.

[27] Jaillet, F., Shariat, B., & Vorpe, D. (1997, August). Periodic b-spline surface skinning of anatomic shapes. In CCCG.

[28] Li, J., Lu, G., & Ye, J. (2011). Automatic skinning and animation of skeletal models. The Visual Computer, 27, 585-594.

[29] Slabaugh, G., Whited, B., Rossignac, J., Fang, T., & Unal, G. (2010). 3D ball skinning using PDEs for generation of smooth tubular surfaces. Computer-Aided Design, 42(1), 18-26. 

[30] Kavan, L., & Žára, J. (2003). Real time skin deformation with bones blending [J].Václav Skala - UNION Agency.

[31] Chen, C. H., Lin, I. C., Tsai, M. H., & Lu, P. H. (2011, September). Lattice-based skinning and deformation for real-time skeleton-driven animation. In 2011 12th International Conference on Computer-Aided Design and Computer Graphics (pp. 306-312). IEEE.

[32] Kant, Y., Siarohin, A., Guler, R. A., Chai, M., Ren, J., Tulyakov, S., & Gilitschenski, I. (2023). Invertible Neural Skinning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8715-8725).

[33] Jeruzalski, T., Levin, D. I., Jacobson, A., Lalonde, P., Norouzi, M., & Tagliasacchi, A. (2020). Nilbs: Neural inverse linear blend skinning. arXiv preprint arXiv:2004.05980.

[34] Jacobson, A. (2014). Part II: Automatic Skinning via Constrained Energy Optimization. SIGGRAPH Course, 2014, 1-28.

[35] Kavan, L. (2014). Direct skinning methods and deformation primitives. ACM SIGGRAPH Courses, 4(pp. 1-11). 

[36] Komaritzan, M., & Botsch, M. (2018). Projective skinning. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 1(1), 1-19.

[37] Yang, X., Somasekharan, A., & Zhang, J. J. (2006). Curve skeleton skinning for human and creature characters. Computer Animation and Virtual Worlds, 17(3‐4), 281-292. 

[38] Kavan, L., Sloan, P. P., & O'Sullivan, C. (2010, May). Fast and efficient skinning of animated meshes. Oxford, UK: Blackwell Publishing Ltd. In Computer Graphics Forum (Vol. 29, No. 2, pp. 327-336).

[39] Xian, X., Soon, S. H., Feng, T., Lewis, J. P., & Fong, N. (2006, December). A powell optimization approach for example-based skinning in a production animation environment. In Computer Animation and Social Agents (Vol. 12, p. 2006).

[40] Le, B. H., Villeneuve, K., & Gonzalez-Ochoa, C. (2021). Direct delta mush skinning compression with continuous examples. ACM Transactions on Graphics (TOG), 40(4), 1-13.

[41] Larboulette, C., Cani, M. P., & Arnaldi, B. (2005, May). Dynamic skinning: adding real-time dynamic effects to an existing character animation. In Proceedings of the 21st spring conference on Computer graphics (pp. 87-93).

[42] Fechteler, P., Hilsmann, A., & Eisert, P. (2016, May). Example-based Body Model Optimization and Skinning. In Eurographics (Short Papers) (pp. 5-8).

[43] Kavan, L., & Žára, J. (2005, April). Spherical blend skinning: a real-time deformation of articulated models. In Proceedings of the 2005 symposium on Interactive 3D graphics and games (pp. 9-16).

[44] Murtagh, D. (2008). Pose-space deformation on top of dual quaternion skinning (Doctoral dissertation, MS Thesis, U. Dublin).