Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2023, 4(9); doi: 10.25236/AJMHS.2023.040902.

Research progress on the role of TGF-β in regulating the microenvironment of hepatocellular carcinoma and multidrug resistance

Author(s)

Ting Chen1, Xiaofeng Wang1, Yulei Gou1, Bingtao Zhai2, Xiaoyan Shi1,3, Cuijuan Li1,3, Dongyan Guo2, Yu Fan1,3

Corresponding Author:
Yu Fan
Affiliation(s)

1The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China

2The Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China 

3Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment, Xianyang, Shaanxi, 712046, China

Abstract

Liver cancer is one of the malignant tumors of the digestive system with high incidence. The specificity of early clinical manifestations is not significant, and it is often difficult to detect. Most patients are diagnosed in the middle and late stage, at which time chemotherapy is the preferred treatment, and multi-drug resistance of patients to chemotherapy drugs is the main obstacle to poor chemotherapy effect. The microenvironment of liver cancer is closely related to the formation of multi-drug resistance of liver cancer. TGF-β, as a key regulatory factor in the microenvironment of liver cancer, plays an important regulatory role in the development, invasion, and metastasis of liver cancer cells, blood vessel production and epithelial-mesenchymal transformation in the microenvironment of liver cancer. At the same time, the regulatory effect of TGF-β on tumor microenvironment is closely related to multi-drug resistance of liver cancer. Studying the role and mechanism of TGF-β in regulating liver cancer microenvironment and multi-drug resistance, and finding the target of reversing multi-drug resistance of chemotherapy drugs has become an urgent problem for liver cancer treatment.

Keywords

liver cancer; Multidrug resistance; Tumor microenvironment; Liver cancer microenvironment; TGF - beta

Cite This Paper

Ting Chen, Xiaofeng Wang, Yulei Gou, Bingtao Zhai, Xiaoyan Shi, Cuijuan Li, Dongyan Guo, Yu Fan. Research progress on the role of TGF-β in regulating the microenvironment of hepatocellular carcinoma and multidrug resistance. Academic Journal of Medicine & Health Sciences (2023) Vol. 4, Issue 9: 7-14. https://doi.org/10.25236/AJMHS.2023.040902.

References

[1] Sung H, Ferlay J, Siegel R, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality world wide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. 

[2] Choi S, Kim BK, Yon DK, et al. Global burden of primary liver cancer and its association with underlying aetiologies, sociodemographic status, and sex differences from 1990-2019: A DALY-based analysis of the Global Burden of Disease 2019 study[J]. Clinical and Molecular Hepatology. 2023, 29 (2): 433-452. 

[3] Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. Lancet, 2022, 400(10360): 1345-1362

[4] Gish RG. Hepatocellular carcinoma: overcoming challenges in disease management [J]. Gastroenterology and Hepatology. 2006,4 (3): 61-252.  

[5] Ni Y, Zhou X, Yang J, et al. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment [J]. Front Cell Dev Biol. 2021, 9637675. 

[6] Kim BG, Malek E, Choi SH, et al. Novel therapies emerging in oncology to target the TGF-β pathway [J]. Hematol Oncol. 2021, 14. 

[7] Brianna, Lee SH. Chemotherapy: how to reduce its adverse effects while maintaining the potency? [J]. MED ONCOL. 2023, 40 (3): 88. 

[8] Guo Q, Cao H, Qi X, et al. Research Progress in Reversal of Tumor Multi-drug Resistance via Natural Products[J]. Anti-Cancer Agents in Medicinal Chemistry. 2017, 17 (11): 1466-1476. 

[9] Gao J, Jia Yijiang, Ayijiang, et al. Progress of tumor multidrug resistance mechanism and reversal of drug resistance [J]. Modern Cancer Medicine, 2022, 30(21):3991-3995. 

[10] Assaraf YG, Brozovic A, Gonçalves AC, et al.  The multi-factorial nature of clinical multidrug resistance in cancer [J]. Drug Resist Updat. 2019, 46 100645. 

[11] Xiong T, Li LD, Xie WQ, et al. Progress of ABC transporter-mediated mechanism of tumor multidrug resistance [J]. Journal of Clinics and Pathology, 2017, 37(01):189-193. 

[12] Tew KD, Manevich Y, Grek C, et al. The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer [J]. Free Radic Biol Med, 2011, 51(2): 299-313. 

[13] Batist G, Tulpule A, Sinha BK, et al. Overexpression of a novel anionic glutathione transferase in multidrug -resistant human breast cancer cells [J]. J Biol Chem, 1986, 261(33): 9-15544. 

[14] Wang Y, Wang X, Zhao H, et al. Clusterin confers resistance to TNF -alpha -induced apoptosis in breast cancer cells through NF-kappaB activation and Bcl-2 overexpression[J]. J Chemotherapy, 2012, 24(24): 57-348. 

[15] Seo SB, Hur JG, Kim MJ, et al. TRAIL sensitize MDR cells to MDR-related drugs by down-regulation of P-glycoprotein through inhibition of DNA-PKcs/Akt/ GSK-3β pathway and activation of caspases [J]. Mol Cancer, 2010, 9(181-200): 62-254. 

[16] Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy -related leukemias [J]. Int J Environ Res Public Health, 2012, 9( 8) : 2636 - 2657

[17] Ajdukovil J. HIF-1α big chapter in the cancer tale [J]. Exp Oncol, 2016, 38(1):9-12. 

[18] Berretta M, Rinaldi L, Di Benedetto F, et al. Angiogenesis Inhibitors for the Treatment of Hepatocellular Carcinoma [J]. Front Pharmacol, 2016, 7:428. 

[19] Wu X Z, Xie G R, Chen D. Hypoxia and hepatocellular carcinoma: The therapeutic target for hepatocellular carcinoma [J]. J Gastroenterol Hepatol, 2007, 22 (8):1178- 1182

[20] Xu Z, Zhang Y, Dai H, et al. Epithelial-Mesenchymal Transition-Mediated Tumor Therapeutic Resistance [J]. Molecules. 2022, 27. 

[21] Lv Hua, Chen Yuexiang, Zhang Pingping. Research progress of microenvironment and multidrug resistance in hepatocellular carcinoma [J]. Journal of PLA Medicine, 2017, 29(04):33-37. 

[22] Ansell S, Vonderheide R. Cellular Composition of the Tumor Microenvironment [J]. Am Soc Clin Oncol Educ Book. 2013, (33): e91-e97. 

[23] Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity [J]. Cell. 2011, 147 (5): 992-1009. 

[24] Kim Y, Lin Q, Glazer PM, et al. Hypoxic tumor microenvironment and cancer cell differentiation [J]. Curr Mol Med. 2009, 9 (4): 34-425. 

[25] Yugawa K, Itoh S, Yoshizumi T, et al. Prognostic impact of tumor microvessels in intrahepatic cholangiocarcinoma: association with tumor-infiltrating lymphocytes[J]. Modern Pathol. 2020, 34 (4): 798-807. 

[26] Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance[J]. J Cancer Res Clin Oncol. 2015, 141 (10): 713-1697. 

[27] Leonardi GC, Candido S, Cervello M, et al. The tumor microenvironment in hepatocellular carcinoma[J]. Int J Oncol. 2012, 40 (6): 47-1733. 

[28] Wu Sheng-Di, Ma Yu-Shui, Fang Ying, et al. Role of the microenvironment in hepatocellular carcinoma development and progression[J]. Cancer Treat Rev. 2012, 38 (3): 218-25. 

[29] Santhakumar C, Gane EJ, Liu K, et al.  Current perspectives on the tumor microenvironment in hepatocellular carcinoma[J]. Hepatol Int. 2020, 14 (6): 947-957. 

[30] Zhang Nuobei, Zhang Jixiang. Research progress of the microenvironment of hepatocellular carcinoma[J]. World Chinese Digestive Journal, 2014, 22(31):4774-4784 

[31] Hale MD, Hayden JD, Grabsch HI. Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response[J]. CELL ONCOL. 2013,36 (2): 95-112. 

[32] Yang MC, Wang CJ, Liao PC, et al. Hepatic stellate cells secretes type I collagen to trigger epithelial mesenchymal transition of hepatoma cells[J]. Am J Cancer Res. 2014, 4 (6): 63-751. 

[33] DeNardo DG, Andreu P, Coussens LM. Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity[J]. CANCER METAST REV. 2010, 29 (2): 16-309. 

[34] Rodvold JJ, Zanetti M. Tumor microenvironment on the move and the Aselli connection[J]. SCI SIGNAL. 2016, 9 (434): fs13. 

[35] Coulon S, Heindryckx F, Geerts A, et al. Angiogenesis in chronic liver disease and its complications[J]. Liver Int. 2010, 31 (2): 62-146. 

[36] Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression[J]. Cancer Biol Ther. 2011, 11 (8): 23-714. 

[37] Zhu H, Chen XP, Luo SF, et al. Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells. J Exp Clin Cancer Res [J]. 2005, 24 (4): 74-565. 

[38] Erin N, Grahovac J, Brozovic A, et al. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance [J]. Drug Resist Updat. 2020, 53 100715. 

[39] Kiyono K, Suzuki HI, Matsuyama H, et al. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells[J]. Cancer Res. 2009,69 (23): 52- 8844. 

[40] Yagi K, Furuhashi M, Aoki H, et al. c-myc is a downstream target of the Smad pathway[J]. J Biol Chem. 2002, 277 (1): 61- 854. 

[41] Yin Z, Li C, Wang J, et al. Myeloid-derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy[J]. Int J Cancer. 2019, 144 (5): 933-946. 

[42] Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis[J]. Cancer Cell. 2008, 13 (1): 23-35. 

[43] Chen Lanyu, Hu Kaiwen. Research progress of Chinese medicine to improve tumor immune microenvironment based on TGF-β signaling pathway[J]. China Journal of Basic Chinese Medicine, 2020, 26(11):1735-1738. 

[44] Zhang Ya Nan, Ji Xuming, Han Xiaochun, Wang Yuan, Wang Shijun. The role and research progress of TGF-β in tumor immune microenvironment [J]. Journal of Medical Research, 2017, 46(04):8-10. 

[45] Matsuda Y, Wakai T, Kubota M, et al. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma[J]. Int J Clin Exp Pathol. 2014, 7 (4): 313-1299. 

[46] Xia H, Ooi LL, Hui KM.  MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer[J]. Hepatology. 2013, 58 (2): 41-629. 

[47] Goulet, CR, Pouliot, F. TGFβ Signaling in the Tumor Microenvironment [J]. Adv Exp Med Biol. 2021, 1270, 89-105. 

[48] Yamazaki K, Masugi Y, Sakamoto M. Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-β signaling in hepatocarcinogenesis [J]. DIGEST DIS. 2011,29 (3): 8-284.

[49] Bedossa P, Peltier E, Terris B, et al. Transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 1 receptors in normal, cirrhotic, and neoplastic human livers[J]. Hepatology.1995, 21: 760-766. 

[50] Kong J, Qiu Y, Li Y, et al. TGF-β1 elevates P-gp and BCRP in hepatocellular carcinoma through HOTAIR/ miR-145 axis[J]. Biopharm Drug Dispos. 2019, 40 (2): 70-80. 

[51] Shrestha R, Prithviraj P, Bridle KR, et al. Combined Inhibition of TGF-β1-Induced EMT and PD-L1 Silencing Re-Sensitizes Hepatocellular Carcinoma to Sorafenib Treatment[J]. J Clin Med. 2021, 10 (9). 

[52] Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett. 2014, 352 (2): 8- 160. 

[53] Dal Bo M, De Mattia E, Baboci L, et al. New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma[J]. Drug Resist Updat. 2020, 51, 100702. 

[54] Catalano V, Turdo A, Di Franco S, et al. Tumor and its microenvironment: a ynergistic interplay [J]. Semin Cancer Biol. 2013, 23 (6): 32-522.