Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(10); doi: 10.25236/IJFM.2023.051011.

The research landscape of ferroptosis in cognitive function: A bibliometric and visualized analysis

Author(s)

Zeyan Ye1, Liang Cao2, Xianghai Zeng1, Tingyu Mai1, Yuqian Cheng1, Xiashuang Zhang1, Yichen Lin1, Zhe Liu1, Meiling Du1, You Li1, Zhiyong Zhang1

Corresponding Author:
You Li
Affiliation(s)

1Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Zhiyuan Road No. 1, Guilin, Guangxi, 541199, China/The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath

2Department of Experimental Teaching Center, School of Public Health, Guilin Medical University, Zhiyuan Road No.1, Guilin, Guangxi, 541199, China

Abstract

Ferroptosis, which is a new form of cell death distinct from apoptosis, necrosis and autophagy, is gradually gaining widespread attention in various research fields. There is now evidence from several studies that ferroptosis plays an important role in altered cognitive function. We used the Web of Science Core Collection (WoSCC) to search for "ferroptosis" and "cognitive function" as subject terms. A total of 37 published papers were included after filtering and deduplication were performed. CiteSpace (V6.1.R6) was used for bibliometric analysis and visualization to summarize the content and development process of the ferroptosis research in the field of cognitive function and to identify the current and possible future research hotspots and directions. The results show a rapidly increasing trend regarding studies related to cognitive function associated with ferroptosis. China is the world leader in terms of the number of studies and institutions publishing on related topics, with the United States at the center. There is less collaboration between researchers and institutions in this field. At present this research centers on the roles that oxidative stress, lipid peroxidation, and iron-related accumulation and regulation play in cognitive function, as well as their impacts, and these areas are likely to continue to be research hotspots in the future.

Keywords

ferroptosis; cognitive function; bibliometric; visualization, CiteSpace

Cite This Paper

Zeyan Ye, Liang Cao, Xianghai Zeng, Tingyu Mai, Yuqian Cheng, Xiashuang Zhang, Yichen Lin, Zhe Liu, Meiling Du, You Li, Zhiyong Zhang. The research landscape of ferroptosis in cognitive function: A bibliometric and visualized analysis. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 10: 62-74. https://doi.org/10.25236/IJFM.2023.051011.

References

[1] Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason, C. E., Patel, D. N., Bauer, A. J., Cantley, A. M., Yang, W. S., Morrison, B., 3rd, & Stockwell, B. R. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 149(5), 1060–1072. https://doi.org/ 10.1016/j. cell.2012.03.042

[2] Yan, H. F., Zou, T., Tuo, Q. Z., Xu, S., Li, H., Belaidi, A. A., & Lei, P. (2021). Ferroptosis: mechanisms and links with diseases. Signal transduction and targeted therapy, 6(1), 49. https://doi.org/ 10.1038/ s41392-020-00428-9

[3] Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1-2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010

[4] Belaidi, A. A., & Bush, A. I. (2016). Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics. Journal of neurochemistry, 139 Suppl 1, 179–197. https://doi.org/ 10. 1111/jnc.13425

[5] Do Van, B., Gouel, F., Jonneaux, A., Timmerman, K., Gelé, P., Pétrault, M., Bastide, M., Laloux, C., Moreau, C., Bordet, R., Devos, D., & Devedjian, J. C. (2016). Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiology of disease, 94, 169–178. https://doi.org/10.1016/j.nbd.2016.05.011

[6] Hirschhorn, T., & Stockwell, B. R. (2019). The development of the concept of ferroptosis. Free radical biology & medicine, 133, 130–143. https://doi.org/10.1016/j.freeradbiomed.2018.09.043

[7] Chaomei, Chen, Loet, & Leydesdorff. (2014). Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis. Journal of the Association for Information Science & Technology.

[8] Qu, X. F., Liang, T. Y., Wu, D. G., Lai, N. S., Deng, R. M., Ma, C., Li, X., Li, H. Y., Liu, Y. Z., Shen, H. T., & Chen, G. (2021). Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS neuroscience & therapeutics, 27(4), 449–463. https://doi.org/10.1111/cns.13548

[9] Zhang, P., Chen, Y., Zhang, S., & Chen, G. (2022). Mitochondria-Related Ferroptosis Drives Cognitive Deficits in Neonatal Mice Following Sevoflurane Administration. Frontiers in medicine, 9, 887062. https://doi.org/10.3389/fmed.2022.887062

[10] Chang, C. F., Cho, S., & Wang, J. (2014). (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Annals of clinical and translational neurology, 1(4), 258–271. https://doi.org/ 10.1002/acn3.54

[11] Wan, J. R., Yang, X. L., & Wang, J. (2019). Ferroptosis in Nervous System Diseases. Springer Nature Switzerland Ag. https://doi.org/10.1007/978-3-030-26780-3_10 

[12] Bao, Z., Liu, Y., Chen, B., Miao, Z., Tu, Y., Li, C., Chao, H., Ye, Y., Xu, X., Sun, G., Zhao, P., Liu, N., Liu, Y., Wang, X., Lam, S. M., Kagan, V. E., Bayır, H., & Ji, J. (2021). Prokineticin-2 prevents neuronal cell deaths in a model of traumatic brain injury. Nature communications, 12(1), 4220. https://doi.org/ 10.1038/s41467-021-24469-y

[13] Cai, Y., Chai, Y., Fu, Y., Wang, Y., Zhang, Y., Zhang, X., Zhu, L., Miao, M., & Yan, T. (2022). Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Frontiers in aging neuroscience, 13, 809433. https://doi.org/10.3389/fnagi.2021.809433

[14] Dang, Y., He, Q., Yang, S., Sun, H., Liu, Y., Li, W., Tang, Y., Zheng, Y., & Wu, T. (2022). FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer's Disease: Evidence from Single-Cell Transcriptomic Analysis. Pharmaceuticals (Basel, Switzerland), 15(10), 1177. https://doi.org/10. 3390/ph15101177

[15] Ye, Q., Zeng, C., Dong, L., Wu, Y., Huang, Q., & Wu, Y. (2019). Inhibition of ferroptosis processes ameliorates cognitive impairment in kainic acid-induced temporal lobe epilepsy in rats. American journal of translational research, 11(2), 875–884.

[16] Wang, X., Wang, Z., Cao, J., Dong, Y., & Chen, Y. (2021). Melatonin Alleviates Acute Sleep Deprivation-Induced Memory Loss in Mice by Suppressing Hippocampal Ferroptosis. Frontiers in pharmacology, 12, 708645. https://doi.org/10.3389/fphar.2021.708645

[17] Zhang, Y. H., Wang, D. W., Xu, S. F., Zhang, S., Fan, Y. G., Yang, Y. Y., Guo, S. Q., Wang, S., Guo, T., Wang, Z. Y., & Guo, C. (2018). α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox biology, 14, 535–548. https://doi.org/10.1016/j.redox.2017.11.001

[18] An, J. R., Su, J. N., Sun, G. Y., Wang, Q. F., Fan, Y. D., Jiang, N., Yang, Y. F., & Shi, Y. (2022). Liraglutide Alleviates Cognitive Deficit in db/db Mice: Involvement in Oxidative Stress, Iron Overload, and Ferroptosis. Neurochemical research, 47(2), 279–294. https://doi.org/10.1007/s11064-021-03442-7

[19] Gao, Y., Li, J., Wu, Q., Wang, S., Yang, S., Li, X., Chen, N., Li, L., & Zhang, L. (2021). Tetrahydroxy stilbene glycoside ameliorates Alzheimer's disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. International immunopharmacology, 99, 108002. https://doi.org/10.1016/j.intimp.2021.108002

[20] Li, L., Li, W. J., Zheng, X. R., Liu, Q. L., Du, Q., Lai, Y. J., & Liu, S. Q. (2022). Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Molecular medicine (Cambridge, Mass.), 28(1), 11. https://doi.org/10.1186

/s10020-022-00442-3

[21] Tang, J. J., Huang, L. F., Deng, J. L., Wang, Y. M., Guo, C., Peng, X. N., Liu, Z., & Gao, J. M. (2022). Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer's disease mice model. Redox biology, 50, 102229. https://doi.org/10.1016/j.redox.2022.102229

[22] Liu, H., He, S., Wang, J., Li, C., Liao, Y., Zou, Q., & Chen, R. (2022). Tetrandrine Ameliorates Traumatic Brain Injury by Regulating Autophagy to Reduce Ferroptosis. Neurochemical research, 47(6), 1574–1587. https://doi.org/10.1007/s11064-022-03553-9

[23] Xie, R., Zhao, W., Lowe, S., Bentley, R., Hu, G., Mei, H., Jiang, X., Sun, C., Wu, Y., & Yueying Liu (2022). Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free radical biology & medicine, 191, 212–226. https://doi.org/10.1016/j.freeradbiomed.2022.09.001

[24] Yang, J. H., Nguyen, C. D., Lee, G., & Na, C. S. (2022). Insamgobonhwan Protects Neuronal Cells from Lipid ROS and Improves Deficient Cognitive Function. Antioxidants (Basel, Switzerland), 11(2), 295. https://doi.org/10.3390/antiox11020295

[25] Chu, J., Jiang, Y., Zhou, W., Zhang, J., Li, H., Yu, Y., & Yu, Y. (2022). Acetaminophen alleviates ferroptosis in mice with sepsis-associated encephalopathy via the GPX4 pathway. Human & experimental toxicology, 41, 9603271221133547. https://doi.org/10.1177/09603271221133547

[26] Ma, Z., Ma, Y., Cao, X., Zhang, Y., & Song, T. (2023). Avenanthramide-C Activates Nrf2/ARE Pathway and Inhibiting Ferroptosis Pathway to Improve Cognitive Dysfunction in Aging Rats. Neurochemical research, 48(2), 393–403. https://doi.org/10.1007/s11064-022-03754-2

[27] Wang, D., Zhang, S., Ge, X., Yin, Z., Li, M., Guo, M., Hu, T., Han, Z., Kong, X., Li, D., Zhao, J., Wang, L., Liu, Q., Chen, F., & Lei, P. (2022). Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. Journal of neuroinflammation, 19(1), 185. https://doi.org/10.1186/s12974-022-02550-7

[28] Hambright, W. S., Fonseca, R. S., Chen, L., Na, R., & Ran, Q. (2017). Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox biology, 12, 8–17. https://doi.org/10.1016/j.redox.2017.01.021

[29] Wang, F., Wang, J., Shen, Y., Li, H., Rausch, W. D., & Huang, X. (2022). Iron Dyshomeostasis and Ferroptosis: A New Alzheimer's Disease Hypothesis. Frontiers in aging neuroscience, 14, 830569. https://doi.org/10.3389/fnagi.2022.830569

[30] Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer's disease. Brain pathology (Zurich, Switzerland), 9(1), 133–146. https://doi.org/10.1111/j.1750-3639.1999.tb00215.x

[31] Wu, J., Yang, J. J., Cao, Y., Li, H., Zhao, H., Yang, S., & Li, K. (2020). Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. Journal of neuroinflammation, 17(1), 110. https://doi.org/10.1186/s12974-020-01777-6

[32] He, Y. J., Cong, L., Liang, S. L., Ma, X., Tian, J. N., Li, H., & Wu, Y. (2022). Discovery and validation of Ferroptosis-related molecular patterns and immune characteristics in Alzheimer's disease. Frontiers in aging neuroscience, 14, 1056312. https://doi.org/10.3389/fnagi.2022.1056312

[33] Xie, Z., Wang, X., Luo, X., Yan, J., Zhang, J., Sun, R., Luo, A., & Li, S. (2023). Activated AMPK mitigates diabetes-related cognitive dysfunction by inhibiting hippocampal ferroptosis. Biochemical pharmacology, 207, 115374. https://doi.org/10.1016/j.bcp.2022.115374

[34] Zhu, Z. Y., Liu, Y. D., Gong, Y., Jin, W., Topchiy, E., Turdi, S., Gao, Y. F., Culver, B., Wang, S. Y., Ge, W., Zha, W. L., Ren, J., Pei, Z. H., & Qin, X. (2022). Mitochondrial aldehyde dehydrogenase (ALDH2) rescues cardiac contractile dysfunction in an APP/PS1 murine model of Alzheimer's disease via inhibition of ACSL4-dependent ferroptosis. Acta pharmacologica Sinica, 43(1), 39–49. https://doi.org/ 10.1038/s41401-021-00635-2

[35] Gleitze, S., Paula-Lima, A., Núñez, M. T., & Hidalgo, C. (2021). The calcium-iron connection in ferroptosis-mediated neuronal death. Free radical biology & medicine, 175, 28–41. https://doi.org/10. 1016/j. freeradbiomed.2021.08.231

[36] Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z. Y. (2019). Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative medicine and cellular longevity, 2019, 5080843. https://doi.org/10.1155/2019/5080843

[37] Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., Fulda, S., Gascón, S., Hatzios, S. K., Kagan, V. E., Noel, K., Jiang, X., Linkermann, A., Murphy, M. E., Overholtzer, M., Oyagi, A., Pagnussat, G. C., Park, J., Ran, Q., Rosenfeld, C. S., … Zhang, D. D. (2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171(2), 273–285. https://doi.org/10.1016/j.cell.2017.09.021

[38] Li, J., Cao, F., Yin, H. L., Huang, Z. J., Lin, Z. T., Mao, N., Sun, B., & Wang, G. (2020). Ferroptosis: past, present and future. Cell death & disease, 11(2), 88. https://doi.org/10.1038/s41419-020-2298-2

[39] Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., Liu, D., Zhang, F., Ning, S., Yao, J., & Tian, X. (2019). Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell death and differentiation, 26(11), 2284–2299. https: // doi. org/ 10.10 38/s41418-019-0299-4