Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(11); doi: 10.25236/IJFM.2023.051106.

The Applications of Lactoferrin in Various Therapies and Nanotechnologies

Author(s)

Huang Jin1, Shi Lei1, Xia Ji2, Wang Nisha2, Ding Qiyang1, Yang Limei3, Lu Xiaohong4

Corresponding Author:
Lu Xiaohong
Affiliation(s)

1Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China

2Xi’an Jiaotong University, Xi'an, Shaanxi, 710049, China

3Yanliang People's Hospital, Xi'an, Shaanxi, 710089, China

4Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China

Abstract

Lactoferrin (LF) is a natural glycoprotein that possesses iron-binding properties and multiple biological applications, including antiviral, anti-inflammatory, antioxidant, anticancer, and immunomodulatory effects. Due to the overexpression of LF receptors on many cells such as cancer cells and its ability to cross the blood-brain barrier (BBB), LF has demonstrated its potential for active targeting, making it an ideal nanocarrier for hydrophobic therapeutic agents. Therefore, LF, as a multifunctional protein, has shown broad prospects for application in cancer therapy and nanomedicine.

Keywords

Lactoferrin; nanocarrier; brain targeting; cancer cell targeting

Cite This Paper

Huang Jin, Shi Lei, Xia Ji, Wang Nisha, Ding Qiyang, Yang Limei, Lu Xiaohong. The Applications of Lactoferrin in Various Therapies and Nanotechnologies. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 11: 39-45. https://doi.org/10.25236/IJFM.2023.051106.

References

[1] Wang Bo, Timilsena Yakindra Prasad, Blanch Ewan, et al. Lactoferrin: Structure, function, denaturation and digestion [J]. Critical reviews in food science and nutrition, 2019, 59(4):580-596.

[2] Bielecka Marika, Cichosz Grażyna, Czeczot Hanna, et al. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review [J]. International Dairy Journal, 2022, 127:105208. 

[3] Hao Liyuan, Shan Qiang, Wei Jingya, et al. Lactoferrin: Major Physiological Functions and Applications [J]. Current protein & peptide science, 2019, 20(2):139-144. 

[4] Lopez Robert N, Leach Steven T, Lemberg Daniel A, et al. Fecal biomarkers in inflammatory bowel disease [J]. Journal of gastroenterology and hepatology, 2017, 32(3):577-582. 

[5] Zhang Yingqi, Lu Chao, Zhang Jin, et al. Lactoferrin and Its Detection Methods: A Review [J]. Nutrients, 2021, 13(8):2492-2492. 

[6] Sally A. Sabra, Ahmed O. Elzoghby, Salah A. Sheweita, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128:156-169. 

[7] Maria Stefania Lepanto, Luigi Rosa, Rosalba Paesano, et al. Lactoferrin in Aseptic and Septic Inflammation [J]. Molecules, 2019, 24(7):1323-1323. 

[8] Fiona O’Halloran, Christine Beecher, Valerie Chaurin, et al. Lactoferrin affects the adherence and invasion of Streptococcus dysgalactiae ssp. dysgalactiae in mammary epithelial cells [J]. Journal of Dairy Science, 2016, 99(6):4619-4628. 

[9] Berlutti Francesca, Pilloni Andrea, Pietropaoli Miriam, et al. Lactoferrin and oral diseases: current status and perspective in periodontitis [J]. Annali di stomatologia, 2011, 2(34):10-18. 

[10] AvalosGómez Christian, RamírezRico Gerardo, RuizMazón Lucero, et al. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections [J]. Current pharmaceutical design, 2022, 28(40):3243-3260. 

[11] Aslaa Ahmed, Gavriella Siman-Tov, Grant Hall, et al. Human Antimicrobial Peptides as Therapeutics for Viral Infections [J]. Viruses, 2019, 11(8):704-704. 

[12] Piera Valenti, Luigi Rosa, Daniela Capobianco, et al. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense [J]. Frontiers in Immunology, 2018, 9:376. 

[13] Habib Hosam M, Ibrahim Sahar, Zaim Aamnah, et al. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators [J]. Biomedicine & Pharmacotherapy, 2021, 136:111228-111228. 

[14] Sinopoli Alessandra, Isonne Claudia, Santoro Maria Mercedes, et al. The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review [J]. Reviews in medical virology, 2021, 32(1):e2261-e2261. 

[15] Guedes Joana P, Pereira Cátia S, Rodrigues Lígia R, et al. Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro [J]. Frontiers in oncology, 2018, 8:200. 

[16] Meram Chalamaiah, Wenlin Yu, Jianping Wu, et al. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review [J]. Food Chemistry, 2018, 245:205-222. 

[17] Sally Sabra, Mona M. Agwa, Lactoferrin, a unique molecule with diverse therapeutical and nanotechnological applications [J]. International Journal of Biological Macromolecules, 2020, 164:1046-1060. 

[18] Christina McGuire, Kristina Cotter, Laura Stransky, et al. Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness [J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 2016, 1857(8):1213-1218. 

[19] Berthon Bronwyn S, Williams Lily M, Williams Evan J, et al. Effect of Lactoferrin Supplementation on Inflammation, Immune Function, and Prevention of Respiratory Tract Infections in Humans: A Systematic Review and Meta-analysis [J]. Advances in nutrition (Bethesda, Md.), 2022, 13(5):1799-1819. 

[20] Salaris Claudio, Scarpa Melania, Elli Marina, et al. Protective Effects of Lactoferrin against SARS-CoV-2 Infection In Vitro [J]. Nutrients, 2021, 13(2):328-328. 

[21] Shaobo Ruan, Lin Qin, Wei Xiao, et al. Acid‐Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood–Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery [J]. Advanced Functional Materials, 2018, 28(30):n/a-n/a.

[22] Xiao Zhongnan, Shen Danmin, Lan Ting, et al. Reduction of lactoferrin aggravates neuronal ferroptosis after intracerebral hemorrhagic stroke in hyperglycemic mice [J]. Redox Biology, 2022, 50:102256-102256.

[23] Obozina Anastasiia S., Komedchikova Elena N., Kolesnikova Olga A., et al. Genetically Encoded Self-Assembling Protein Nanoparticles for the Targeted Delivery In Vitro and In Vivo [J]. Pharmaceutics, 2023, 15(1):231-231. 

[24] Kruzel Marian L, Olszewska Paulina, Pazdrak Barbara, et al. New Insights into the Systemic Effects of Oral Lactoferrin: Transcriptome Profiling [J]. Biochemistry and cell biology = Biochimie et biologie cellulaire, 2020, 99(1):47-53. 

[25] Bakrania Anita, Zheng Gang, Bhat Mamatha, et al. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment [J]. Pharmaceutics, 2021, 14(1):41-41. 

[26] Kumar P, Lakshmi Y S, Kondapi A K, et al. An oral formulation of efavirenz-loaded lactoferrin nanoparticles with improved biodistribution and pharmacokinetic profile [J]. HIV medicine, 2017, 18(7):452-462. 

[27] Lakshmi Yeruva Samrajya, Kumar Prashant, Kishore Golla, et al. Triple combination MPT vaginal microbicide using curcumin and efavirenz loaded lactoferrin nanoparticles [J]. Scientific reports, 2016, 6(1):25479. 

[28] Kumar Prashant, Lakshmi Yeruva Samrajya, Kondapi Anand K, et al. Triple Drug Combination of Zidovudine, Efavirenz and Lamivudine Loaded Lactoferrin Nanoparticles: an Effective Nano First-Line Regimen for HIV Therapy [J]. Pharmaceutical research, 2017, 34(2):257-268. 

[29] Manzari Mandana T., Shamay Yosi, Kiguchi Hiroto, et al. Targeted drug delivery strategies for precision medicines [J]. Nature Reviews Materials, 2021, 6(4):351-370. 

[30] Kebebe Dereje, Wu Yumei, Zhang Bing, et al. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer [J]. International journal of nanomedicine, 2019, 14:6179-6195. 

[31] Sally A. Sabra, Salah A. Sheweita, Medhat Haroun, et al. Magnetically Guided Self-Assembled Protein Micelles for Enhanced Delivery of Dasatinib to Human Triple-Negative Breast Cancer Cells [J]. Journal of Pharmaceutical Sciences, 2019, 108(5):1713-1725. 

[32] Doaa Ragab, Sally Sabra, Ying Xia, et al. On-Chip Preparation of Amphiphilic Nanomicelles–in–Sodium Alginate Spheroids as a Novel Platform Against Triple-Negative Human Breast Cancer Cells: Fabrication, Study of Microfluidics Flow Hydrodynamics and Proof of Concept for Anticancer and Drug Delivery Applications [J]. Journal of Pharmaceutical Sciences, 2019, 108(11):3528-3539. 

[33] Sindhwani Shrey, Syed Abdullah Muhammad, Ngai Jessica, et al. The entry of nanoparticles into solid tumours [J]. Nature materials, 2020, 19(5):566-575. 

[34] Meng Qingqing, Wang Aiping, Hua Hongchen, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer's disease [J]. International journal of nanomedicine, 2018, 13:705-718. 

[35] Lombardo Sonia M, Schneider Marc, Türeli Akif E, et al. Key for crossing the BBB with nanoparticles: the rational design [J]. Beilstein journal of nanotechnology, 2020, 11:866-883. 

[36] Zhang Weisen, Mehta Ami, Tong Ziqiu, et al. Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges [J]. Advanced Science, 2021, 8(10):2003937- 2003937. 

[37] Naidu Sreus A G, Wallace Taylor C, Davies Kelvin J A, et al. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19 [J]. Journal of dietary supplements, 2021, 20(2):31-35. 

[38] Colleen S. Curran, Karen P. Demick, John M. Mansfield, et al. Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways [J]. Cellular Immunology, 2006, 242(1): 23-30. 

[39] Zhang Wei, Xiang Lu, Luo Peng, et al. Bovine-derived α-lactalbumin exhibits cardiovascular protection against aging by ameliorating the inflammatory process in mice [J]. International Immunopharmacology, 2022, 113:109291-109291.