Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2023, 5(11); doi: 10.25236/IJFM.2023.051110.

MicroRNAs positive and negative regulation of cellular osteogenesis and angiogenesis

Author(s)

Sifan Wang1,2, Dumanbieke·Amantai1,2, Huiyu He1,2

Corresponding Author:
Huiyu He
Affiliation(s)

1Department of Prosthodontics and Dental Implantology, The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatological Hospital), Urumqi, Xinjiang, 830054, China

2Xinjiang Uygur Autonomous Region Institute of Stomatology, Urumqi, Xinjiang, 830054, China

Abstract

MicroRNAs(miRNAs) is a class of non-coding single composed of 21 to 25 nucleotides Chain small molecule RNA, which is mainly involved in the regulation of post-transcriptional gene expression, binds to the 3 ′ -UTR of target mRNA by inhibiting post-transcription gene expression and reducing corresponding protein synthesis, and plays extensive biological roles in the fields of osteogenesis and immunity. In recent years, a number of scientific studies have demonstrated that miRNAs is an important regulator of cell growth, differentiation and apoptosis, each miRNA has been shown to have hundreds of target mRNA, miRNA and target mRNA between formed a complex regulatory network involved in a variety of regulatory pathways, including development, virus defense, hematopoietic process, organ formation, cell proliferation and apoptosis, fat metabolism, etc. Currently, how to rationally utilize miRNA to regulate the function and differentiation of stem cells is an extremely attractive therapeutic direction in regenerative medicine. It is clear that small RNA (microRNA, miRNA) plays an important role in the growth, differentiation and function of bone cells, and miRNA is closely related to the survival and blood vessel formation of bone marrow mesenchymal stem cells. The miRNA can directly or indirectly participate in the process of osteoangiogenesis by inhibiting or promoting angiogenesis, regulating BMSC differentiation, activating or silent growth factor-mediated signaling pathways, and regulating the immune environment. This chapter will review the role of some microRNA in osteogenesis, and to study and explore the possible mechanisms behind their effects.

Keywords

MicroRNA; Angiogenesis; Bone angiogenesis; Bone regeneration

Cite This Paper

Sifan Wang, Dumanbieke·Amantai, Huiyu He. MicroRNAs positive and negative regulation of cellular osteogenesis and angiogenesis. International Journal of Frontiers in Medicine (2023), Vol. 5, Issue 11: 63-68. https://doi.org/10.25236/IJFM.2023.051110.

References

[1] Liu W, Miao Y, Zhang L, et al. MiR-211 protects cerebralischemia/reperfusion injury by inhibiting cell 12 apoptosis[J]. Bioengineered, 2020; 11(1):189-200. 

[2] Chen L, Zhu Q, Lu L, et al. MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1[J]. Bioengineered, 2020; 11(1):91-102. 

[3] Martinez B, Peplow PV. MicroRNAs as disease progression biomarkers and therapeutic targets in experimental autoimmune encephalomyelitis model of multiple sclerosis[J]. Neural Regen Res, 2020; 15(10): 1831-1837. 

[4] Han Z, Rosen ST, Querfeld C. Targeting microRNA in hematologic malignancies[J]. Curr Opin Oncol, 2020; 32(5):535-544. 

[5] Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068–3071

[6] Hosseinpour S, He Y, Nanda A, et al. MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration[J]. Calcif Tissue Int, 2019; 105(3):223-238. 

[7] Dou C, Ding N, Luo F, Hou T, Cao Z, Bai Y, Liu C, Xu J, Dong S (2018) Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization. Adv Sci 5:1700578

[8] Yan B, Wang Z-H, Zhu C-D, Guo J-T, Zhao J-L (2014) MicroRNA repertoire for functional genome research in tilapia identifed by deep sequencing. Mol Biol Rep 41:4953–4963 

[9] Dou C, Zhang C, Kang F, Yang X, Jiang H, Bai Y, Xiang J, Xu J, Dong S (2014) MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and diferentiation. Biochim Biophys Acta Gene Regulat Mech 1839:1084–1096

[10] Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlösser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286 

[11] Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci 21:852–858

[12] Zhao X, Zmijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinfammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:497–504

[13] Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the diferentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419

[14] Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M (2016) MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem 411:23–33

[15] Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J (2013) The promotion of bone regeneration through positive regulation of angiogenic–osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058

[16] Lian JB, Stein GS, Javed A, Van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16 

[17] Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523 

[18] Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic diferentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851 

[19] Icli B, Wara A, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113:1231–1241 

[20] Qin W, Yang F, Deng R, Li D, Song Z, Tian Y, Wang R, Ling J, Lin Z (2012) Smad 1/5 is involved in bone morphogenetic protein-2-induced odontoblastic diferentiation in human dental pulp cells. J Endod 38:66–71

[21] Yamasaki K, Nakasa T, Miyaki S, Yamasaki T, Yasunaga Y, Ochi M (2012) Angiogenic microRNA-210 is present in cells surrounding osteonecrosis. J Orthop Res 30:1263–1270 

[22] Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic diferentiation through inhibition of AcvR1b. FEBS Lett 583:2263–2268

[23] Liu X-D, Cai F, Liu L, Zhang Y, Yang A-L (2015) MicroRNA-210 is involved in the regulation of postmenopausal osteoporosis through promotion of VEGF expression and osteoblast diferentiation. Biol Chem 396:339–347

[24] Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104:20350–20355 

[25] You L, Gu W, Chen L, Pan L, Chen J, Peng Y (2014) MiR-378 overexpression attenuates high glucose-suppressed osteogenicdiferentiation through targeting CASP3 and activating PI3 K/ Akt signaling pathway. Int J Clin Exp Pathol 7:7249–7261 

[26] Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y, Yang B, Yu X (2018) MicroRNA-378 promotes osteogenesis-angiogenesis coupling in BMMSCs for potential bone regeneration. Anal Cell Pathol 2018:8402390

[27] Bao L, Li X, et al. MicroRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma micro environment and further promotes theprogression of glioma[J]. Mol Cell Biochem, 2019, 460(1-2):67-79. 

[28] Acuña SM, Aoki J, et al. Toll-Like Receptor and miRNA-let-7e Expression Alter the Inflammatory Response in Leishmania amazonensis-Infected Macrophages[J]. Front Immunol, 2018, 9:2792. 

[29] Zhang Y, Li X, et al. Microarray analysis of circular RNA expression patterns in polarized macrophages [J]. Int J Mol Med, 2017, 39(2):373-379. 13

[30] Li H, Shen S, et al. Immunomodulatory Functions of Mesenchymal StemCells in Tissue Engineering [J]. Stem Cells Int, 2019, 2019(2):1-18. 

[31] Damani T, Williams E, et al. microRNAs in Ex Vivo Human Adipose Tissue Derived Mesenchymal Stromal Cells(ASC)Undergo Rapid Culture-Induced Changes in Expression, Including miR-378 which Promotes Adipogenesis[J]. Int J Mol, 2020, 21(4):1492. 

[32] Chen W, Li X, et al. miR-378a Modulates Macrophage Phagocytosis and Differentiation through Targeting CD47-SIRPαAxis in Atherosclerosis[J]. Scand JImmunol, 2019, 90(1):e12766. 

[33] Ji X, Yuan X, et al. Mesenchymal stem cell-loaded thermosensitive hydrox ypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprol actone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation [J]. Theranostics, 2020, 10(2):725-740. 

[34] Aguado-Fraile E, Ramos E, Conde E, Rodríguez M, Liaño F, García-Bermejo ML (2013) MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrología (English Edition) 33:826–83475. 

[35] Tang H (2013) miR-10a regulates epithelial-mesenchymal transition and adhesion and angiogenesis in hepatoma. In: Federation of American Societies for Experimental Biology, p lb153-lb153

[36] Day T F, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte diferentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

[37] Sun W, Ma Y, Chen P, Wang D (2015) MicroRNA-10a silencing reverses cisplatin resistance in the A549/cisplatin human lung cancer cell line via the transforming growth factor-β/Smad2/STAT3/STAT5 pathway. Mol Med Rep 11:3854–3859

[38] Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N, Kandimalla ER, Quax PH, Nossent AY (2014) Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 increases neovascularization and blood fow recovery after ischemia. Circ Res 115:696–708

[39] He B, Zhang ZK, Liu J, He YX, Tang T, Li J, Guo BS, Lu AP, Zhang BT, Zhang G (2016) Bioinformatics and microarray analysis of miRNAs in aged female mice model implied new molecular mechanisms for impaired fracture healing. Int J Mol Sci 17:1260

[40] Cash DE, Bock CB, Schughart K, Linney E, Underhill TM (1997) Retinoic acid receptor alpha function in vertebrate limb skeletogenesis: a modulator of chondrogenesis. J Cell Biol 136:445–457

[41] Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic diferentiationthrough inhibition of AcvR1b. FEBS Lett 583:2263–2268

[42] Yu F, Cui Y, Zhou X, Zhang X, Han J (2011) Osteogenic diferentiation of human ligament fbroblasts induced by conditioned medium of osteoclast-like cells. BioSci Trends 5:46–51