Welcome to Francis Academic Press

Academic Journal of Agriculture & Life Sciences, 2024, 5(1); doi: 10.25236/AJALS.2024.050103.

Advances in Astaxanthin Biosynthesis


Huan Niu

Corresponding Author:
Huan Niu

College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China


Astaxanthin is a fat-soluble and water-soluble pigment, a red carotenoid widely found in oysters, rhodococcus, and salmon. It is a powerful natural antioxidant that can effectively eliminate free radicals in the body, combat aging, clear vascular waste, reduce fatigue, regulate immunity, and exhibit a variety of biological activities. It is widely used in medicine, food, and cosmetics. Although natural astaxanthin is present in a variety of organisms, its content is very low, the extraction process is complex, the yield is small, and the price is expensive. With the identification of key genes for astaxanthin synthesis, it is possible to construct the astaxanthin biosynthesis pathway in microorganisms, synthesize the precursor substances of astaxanthin, or directly synthesize astaxanthin. Microbial synthesis of astaxanthin is environmentally friendly, cost-effective, involves small microbial size, rapid growth, strong vitality, and has garnered significant attention in the industrial production of astaxanthin. This paper reviews the recent advancements in the synthesis of astaxanthin by algae, fungi, and bacteria, as well as the efforts to increase its production by microorganisms.


Astaxanthin, biosynthesis, algae, fungi, bacteria

Cite This Paper

Huan Niu. Advances in Astaxanthin Biosynthesis. Academic Journal of Agriculture & Life Sciences (2024) Vol. 5 Issue 1: 14-21. https://doi.org/10.25236/AJALS.2024.050103.


[1] Liu X, Xie J, Zhou L, et al. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers[J]. Food Chem. 2023;404(Pt B):134605. 

[2] Sztretye M, Singlár Z, Szabó L, et al. Improved Tetanic Force and Mitochondrial Calcium Homeostasis by Astaxanthin Treatment in Mouse Skeletal Muscle[J]. Antioxidants (Basel). 2020;9(2):98. 

[3] Park JS, Mathison BD, Hayek MG, Massimino S, Reinhart GA, Chew BP. Astaxanthin stimulates cell-mediated and humoral immune responses in cats[J]. Vet Immunol Immunopathol. 2011;144(3-4):455-461. 

[4] Palozza P, Torelli C, Boninsegna A, et al. Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells[J]. Cancer Lett. 2009; 283(1):108-117. 

[5] Donoso A, González-Durán J, Muñoz AA, González PA, Agurto-Muñoz C. "Therapeutic uses of natural astaxanthin: An evidence-based review focused on human clinical trials"[J]. Pharmacol Res. 2021; 166:105479. 

[6] Ursoniu S, Sahebkar A, Serban MC, Banach M. Lipid profile and glucose changes after supplementation with astaxanthin: a systematic review and meta-analysis of randomized controlled trials [J]. Arch Med Sci. 2015; 11(2):253-266. 

[7] Yoshida H, Yanai H, Ito K, et al. Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia[J]. Atherosclerosis. 2010;209(2):520-523. 

[8] Cao J, Wang W. Effects of astaxanthin and esterified glucomannan on hematological and serum parameters, and liver pathological changes in broilers fed aflatoxin-B1-contaminated feed[J]. Anim Sci J. 2014; 85(2):150-157. 

[9] Cunningham FX Jr, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis [J]. Plant Cell. 2011; 23(8):3055-3069. 

[10] Misawa N, Satomi Y, Kondo K, et al. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level [J]. J Bacteriol. 1995; 177(22):6575-6584. 

[11] Nishshanka GKSH, Liyanaarachchi VC, Premaratne M, Nimarshana PHV, Ariyadasa TU, Kornaros M. Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: Current status, challenges and future perspectives[J]. Bioresour Technol. 2021;342:126018. 

[12] Li J, Zhu D, Niu J, Shen S, Wang G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis[J]. Biotechnol Adv. 2011; 29(6):568-574.

[13] Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina [J]. Food Chem. 2019; 277:128-134. 

[14] Aye Myint A, Hariyanto P, Irshad M, et al. Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment[J]. Bioresour Technol. 2022;346:126616.

[15] Zhang WW, Zhou XF, Zhang YL, et al. Enhancing Astaxanthin Accumulation in Haematococcus pluvialis by Coupled Light Intensity and Nitrogen Starvation in Column Photobioreactors[J]. J Microbiol Biotechnol. 2018;28(12):2019-2028.

[16] Lee KH, Chun Y, Lee JH, Park C, Yoo HY, Kwak HS. Improved Productivity of Astaxanthin from Photosensitive Haematococcus pluvialis Using Phototaxis Technology[J]. Mar Drugs. 2022;20(4):220. Published 2022 Mar 22. 

[17] Christian D, Zhang J, Sawdon AJ, Peng CA. Enhanced astaxanthin accumulation in Haematococcus pluvialis using high carbon dioxide concentration and light illumination[J]. Bioresour Technol. 2018; 256: 548-551. 

[18] Xi T, Kim DG, Roh SW, Choi JS, Choi YE. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy[J]. Appl Microbiol Biotechnol. 2016; 100(14): 6231-6238. 

[19] Han SI, Chang SH, Lee C, et al. Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris [J]. Bioresour Technol. 2020;314:123725.

[20] Wang N, Guan B, Kong Q, Sun H, Geng Z, Duan L. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding[J]. J Biotechnol. 2016;236:71-77. 

[21] Xing H, Zhao Y, Li T, Han B, Zhao P, Yu X. Enhancing astaxanthin and lipid coproduction in Haematococcus pluvialis by the combined induction of plant growth regulators and multiple stresses[J]. Bioresour Technol. 2022; 344(Pt A):126225. 

[22] Lee JB, Park YH, Jeon MS, Kim S, Choi YE. Polyethylenimine linked with chitosan improves astaxanthin production in Haematococcus pluvialis[J]. Appl Microbiol Biotechnol. 2023;107(2-3):569-580.

[23] Yu C, Wang HP, Yu X. The associative induction of succinic acid and hydrogen sulfide for high-producing biomass, astaxanthin and lipids in Haematococcus pluvialis[J]. Bioresour Technol. 2022; 358:127397.

[24] Yu C, Wang HP, Qiao T, Zhao Y, Yu X. A fed-batch feeding with succinic acid strategy for astaxanthin and lipid hyper-production in Haematococcus pluviualis[J]. Bioresour Technol. 2021; 340:125648.

[25] Raman R, Mohamad SE. Astaxanthin production by freshwater microalgae Chlorella sorokiniana and marine microalgae Tetraselmis sp[J]. Pak J Biol Sci. 2012;15(24):1182-1186. 

[26] Zhao Y, Yue C, Ding W, et al. Butylated hydroxytoluene induces astaxanthin and lipid production in Haematococcus pluvialis under high-light and nitrogen-deficiency conditions[J]. Bioresour Technol. 2018; 266:315-321. 

[27] Yang HE, Yu BS, Sim SJ. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation[J]. Bioresour Technol. 2023;372:128651. 

[28] Chen JH, Wei D, Lim PE. Enhanced coproduction of astaxanthin and lipids by the green microalga Chromochloris zofingiensis: Selected phytohormones as positive stimulators[J]. Bioresour Technol. 2020; 295:122242. 

[29] Li M, Zhou P, Chen M, Yu H, Ye L. Spatiotemporal Regulation of Astaxanthin Synthesis in S. cerevisiae[J]. ACS Synth Biol. 2022;11(8):2636-2649. 

[30] Ma Y, Li J, Huang S, Stephanopoulos G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica[J]. Metab Eng. 2021;68:152-161.

[31] Lin YJ, Chang JJ, Lin HY, et al. Metabolic engineering a yeast to produce astaxanthin[J]. Bioresour Technol. 2017;245(Pt A):899-905. 

[32] Tramontin LRR, Kildegaard KR, Sudarsan S, Borodina I. Enhancement of Astaxanthin Biosynthesis in Oleaginous Yeast Yarrowia lipolytica via Microalgal Pathway[J]. Microorganisms. 2019;7(10):472. 

[33] Lu Z, Dai J, Zheng L, et al. Disodium 2-oxoglutarate promotes carbon flux into astaxanthin and fatty acid biosynthesis pathways in Haematococcus[J]. Bioresour Technol. 2020;299:122612. 

[34] Zhang J, Li Q, Lu Y, et al. Astaxanthin overproduction of Phaffia rhodozyma PR106 under titanium dioxide stress by transcriptomics and metabolic regulation analysis[J]. Bioresour Technol. 2021; 342: 125957.

[35] Jin J, Wang Y, Yao M, et al. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering[J]. Biotechnol Biofuels. 2018;11:230.

[36] Li M, Shen B, et al. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin[J]. Agric Food Chem. 2019; 67(4): 1072-1080. 

[37] Jiang G , Yang Z , Wang Y ,et al.Enhanced astaxanthin production in yeast via combined mutagenesis and evolution[J].Biochemical Engineering Journal, 2020, 156:107519.

[38] Li Q, Zhang J, Guan X, et al. Metabolite analysis of soybean oil on promoting astaxanthin production of Phaffia rhodozyma[J]. Sci Food Agric. 2023;103(6):2997-3005.

[39] Miao L, Chi S, Tang Y, et al. Astaxanthin biosynthesis is enhanced by high carotenogenic gene expression and decrease of fatty acids and ergosterol in a Phaffia rhodozyma mutant strain[J]. FEMS Yeast Res. 2011;11(2):192-201. 

[40] Yoshimi T, Hashimoto S, Kubo Y, et al. Improvement of Astaxanthin Production in Aurantiochytrium limacinum by Overexpression of the β-Carotene Hydroxylase Gene[J]. J Appl Biochem Biotechnol. 2023; 195(2):1255-1267. 

[41] Kubo Y, Shiroi M, Higashine T, et al. Enhanced Production of Astaxanthin without Decrease of DHA Content in Aurantiochytrium limacinum by Overexpressing Multifunctional Carotenoid Synthase Gene[J]. Appl Biochem Biotechnol. 2021;193(1):52-64.

[42] Diao J, Song X, Zhang L, Cui J, Chen L, Zhang W. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metab Eng. 2020;61:275-287.

[43] Liang H, Chen H, Liu X, Wang Z, Li P, Lu S. Heterologous Production in the Synechocystis Chassis Suggests the Biosynthetic Pathway of Astaxanthin in Cyanobacteria[J]. Antioxidants (Basel). 2023; 12(10): 1826. 

[44] Ma T, Zhou Y, Li X, et al. Genome mining of astaxanthin biosynthetic genes from Sphingomonas sp. ATCC 55669 for heterologous overproduction in Escherichia coli[J]. Biotechnol J. 2016;11(2):228-237. 

[45] Asker D. Isolation and Characterization of a Novel, Highly Selective Astaxanthin-Producing Marine Bacterium [J]. J Agric Food Chem. 2017;65(41):9101-9109.

[46] Gong Z, Wang H, Tang J, Bi C, Li Q, Zhang X. Coordinated Expression of Astaxanthin Biosynthesis Genes for Improved Astaxanthin Production in Escherichia coli[J]. J Agric Food Chem. 2020;68 (50): 14917-14927.  

[47] Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin[J]. Microb Cell Fact. 2011;10:29.  

[48] Lu Q, Bu YF, Liu JZ. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid[J]. Mar Drugs. 2017; 15(10):296.

[49] Zhang C, Seow VY, Chen X, Too HP. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli[J]. Nat Commun. 2018;9(1):1858. 

[50] Tao L, Wilczek J, Odom JM, Cheng Q. Engineering a beta-carotene ketolase for astaxanthin production[J]. Metab Eng. 2006;8(6):523-531. 

[51] Li D, Li Y, Xu JY, et al. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli[J]. Chin J Nat Med. 2020;18(9):666-676. 

[52] Nogueira M, Enfissi EMA, Welsch R, Beyer P, Zurbriggen MD, Fraser PD. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids [J]. Metab Eng. 2019;52:243-252. 

[53] Ye L, Zhu X, Wu T, et al. Optimizing the localization of astaxanthin enzymes for improved productivity [J]. Biotechnol Biofuels. 2018; 11:278. 

[54] Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity [J]. Metab Eng. 2018; 49: 105-115. 

[55] Lu Q, Liu JZ. Enhanced Astaxanthin Production in Escherichia coli via Morphology and Oxidative Stress Engineering [J]. J Agric Food Chem. 2019; 67(42):11703-11709.