Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2024, 5(3); doi: 10.25236/AJMHS.2024.050310.

Research progress of non-coding RNA-mediated regulation of the osteogenesis of periodontal tissues when mechanical tension is applied


Yanjun Pan, Zhiwen Sun, Zhihui Mai

Corresponding Author:
Zhihui Mai

Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China


Alveolar bone is the most active bone in the human skeleton. When stimulated by mechanical tension, periodontal osteoblast-related cells play a role in alveolar bone remodeling. During bone remodeling, non-coding RNAs (ncRNAs) actively participate in the regulation of osteogenesis, and mainly include microRNA (miRNA), long-chain non-coding RNA (lncRNA), and circular RNA(circRNA). This report aimed to review the current research of regulatory targets, pathways, and functions of cells and ncRNAs that play an important role in the osteogenesis in periodontal tissues when tension is applied.


Mechanical tension; non-coding RNA; osteogenesis; alveolar bone remodeling

Cite This Paper

Yanjun Pan, Zhiwen Sun, Zhihui Mai. Research progress of non-coding RNA-mediated regulation of the osteogenesis of periodontal tissues when mechanical tension is applied. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 3: 54-60. https://doi.org/10.25236/AJMHS.2024.050310.


[1] Will LA: Orthodontic Tooth Movement: A Historic Prospective. Front Oral Biol 2016, 18:46-55.

[2] Wise GE, King GJ: Mechanisms of Tooth Eruption and Orthodontic Tooth Movement. Journal of Dental Research 2008, 87(5):414-434.

[3] Rodrigo F, Viecilli 1 TRK, Jie Chen, et al. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption [J]. Am J Orthod Dentofacial Orthop. 2008. Jun; 133(6): 791. e11-26. 

[4] Basdra EK KG. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis [J]. Eur J Orthod. 1997 Dec; 19(6):615-21.

[5] Kawarizadeh A, Bourauel C, Götz W, Jäger A: Early responses of periodontal ligament cells to mechanical stimulus in vivo. Journal of dental research 2005, 84(10):902-906.

[6] Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL: Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021, 31(6):457-472.

[7] Li Y, Jacox LA, Little SH, Ko C-C: Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci 2018, 34(4):207-214.

[8] Basdra EK, Komposch G: Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 1997, 19(6):615-621.

[9] Shen Y, Pan Y, Guo S, Sun L, Zhang C, Wang L: The roles of mechanosensitive ion channels and associated downstream MAPK signaling pathways in PDLC mechanotransduction. Molecular medicine reports 2020, 21(5):2113-2122.

[10] Wu Y, Ou Y, Liao C, Liang S, Wang Y: High-throughput sequencing analysis of the expression profile of microRNAs and target genes in mechanical force-induced osteoblastic/cementoblastic differentiation of human periodontal ligament cells. Am J Transl Res 2019, 11(6):3398-3411.

[11] Chen Y, Zhang C: Role of noncoding RNAs in orthodontic tooth movement: new insights into periodontium remodeling. J Transl Med 2023, 21(1):101.

[12] Yan L, Liao L, Su X: Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022, 23(1):55.

[13] Potekhina YP, Filatova AI, Tregubova ES, Mokhov DE: Mechanosensitivity of Cells and Its Role in the Regulation of Physiological Functions and the Implementation of Physiotherapeutic Effects (Review). Sovrem Tekhnologii Med 2021, 12(4):77-89.

[14] Shen T, Qiu L, Chang H, Yang Y, Jian C, Xiong J, Zhou J, Dong S: Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol 2014, 7(11):7872-7880.

[15] Wang W, Wang M, Guo X, Zhao Y, Ahmed MMS, Qi H, Chen X: Effect of Tensile Frequency on the Osteogenic Differentiation of Periodontal Ligament Stem Cells. Int J Gen Med 2022, 15:5957-5971.

[16] Ji Y, Fang Y, Wu J: Tension Enhances the Binding Affinity of β1 Integrin by Clamping Talin Tightly: An Insight from Steered Molecular Dynamics Simulations. J Chem Inf Model 2022, 62(22):5688-5698.

[17] Lin T, Sun Y: Arl13b promotes the proliferation, migration, osteogenesis, and mechanosensation of osteoblasts. Tissue Cell 2023, 82:102088.

[18] Nguyen AM, Jacobs CR: Emerging role of primary cilia as mechanosensors in osteocytes. Bone 2013, 54(2):196-204.

[19] Nagai S, Kitamura K, Kimura M, Yamamoto H, Katakura A, Shibukawa Y: Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts. Bull Tokyo Dent Coll 2023, 64(1).

[20] Yoneda M, Suzuki H, Hatano N, Nakano S, Muraki Y, Miyazawa K, Goto S, Muraki K: PIEZO1 and TRPV4, which Are Distinct Mechano-Sensors in the Osteoblastic MC3T3-E1 Cells, Modify Cell-Proliferation. Int J Mol Sci 2019, 20(19).

[21] Grandy C, Port F, Pfeil J, Oliva MAG, Vassalli M, Gottschalk K-E: Cell shape and tension alter focal adhesion structure. Biomater Adv 2023, 145:213277.

[22] Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D: Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 2006, 172(1):41-53.

[23] Roux KJ, Crisp ML, Liu Q, Kim D, Kozlov S, Stewart CL, Burke B: Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proceedings of the National Academy of Sciences of the United States of America 2009, 106(7):2194-2199.

[24] Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM: Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 2001, 114(Pt 24):4485-4498.

[25] Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S: SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 2006, 26(10):3738-3751.

[26] Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X: MicroRNA: function, detection, and bioanalysis. Chem Rev 2013, 113(8):6207-6233.

[27] Chen Z, Zhang Y, Liang C, Chen L, Zhang G, Qian A: Mechanosensitive miRNAs and Bone Formation. Int J Mol Sci 2017, 18(8).

[28] Cultrera G, Lo Giudice A, Santonocito S, Ronsivalle V, Conforte C, Reitano G, Leonardi R, Isola G: MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. Int J Mol Sci 2022, 23(24).

[29] Wang Y, Jia L, Zheng Y, Li W: Bone remodeling induced by mechanical forces is regulated by miRNAs. Bioscience reports 2018, 38(4).

[30] Wei FL, Wang JH, Ding G, Yang SY, Li Y, Hu YJ, Wang SL: Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells. Cells, tissues, organs 2014, 199(5-6):353-363.

[31] Chen N, Sui BD, Hu CH, Cao J, Zheng CX, Hou R, Yang ZK, Zhao P, Chen Q, Yang QJ et al: microRNA-21 Contributes to Orthodontic Tooth Movement. Journal of dental research 2016, 95(12):1425-1433.

[32] Gu X, Li M, Jin Y, Liu D, Wei F: Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation. BMC Genet 2017, 18(1):100.

[33] Chang M, Lin H, Luo M, Wang J, Han G: Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells. In Vitro Cell Dev Biol Anim 2015, 51(8):797-807.

[34] Liu L, Liu M, Li R, Liu H, Du L, Chen H, Zhang Y, Zhang S, Liu D: MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell biology international 2017, 41(2):112-123.

[35] He Z, Sun F, Liu H: Differential expression of lncRNA in periodontal tissue of rats in model of orthodontic tooth movement. Minerva Pediatr (Torino) 2023.

[36] Hong S, Hu S, Kang Z, Liu Z, Yang W, Zhang Y, Yang D, Ruan W, Yu G, Sun L et al: Identification of functional lncRNAs based on competing endogenous RNA network in osteoblast differentiation. J Cell Physiol 2020, 235(3):2232-2244.

[37] Zhang Z, He Q, Yang S, Zhao X, Li X, Wei F: Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cell Signal 2022, 93:110285.

[38] Chang M, Lin H, Fu H, Wang B, Han G, Fan M: MicroRNA-195-5p Regulates Osteogenic Differentiation of Periodontal Ligament Cells Under Mechanical Loading. J Cell Physiol 2017, 232(12):3762-3774.

[39] Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z: Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022, 23(1):425.

[40] Han H, Tian T, Huang G, Li D, Yang S: The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY) 2021, 13(14):18257-18273.

[41] Zhu G, Zeng C, Qian Y, Yuan S, Ye Z, Zhao S, Li R: Tensile strain promotes osteogenic differentiation of bone marrow mesenchymal stem cells through upregulating lncRNA-MEG3. Histol Histopathol 2021, 36(9):939-946.

[42] Prats A-C, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B, Lacazette E: Circular RNA, the Key for Translation. Int J Mol Sci 2020, 21(22).