Welcome to Francis Academic Press

International Journal of Frontiers in Medicine, 2024, 6(4); doi: 10.25236/IJFM.2024.060411.

Therapeutic Synergies in Traditional Chinese Herbal Teas: An Integrative Review of Lonicerae Japonicae Flos and Complementary Constituents


Yaoxu Zhou, Jiating Liang, Chengyong Wang, Rongting Ye

Corresponding Author:
Yaoxu Zhou

Research and Development Department, Dongguan Heyme Biotechnology Co., Dongguan, China


This review explores the synergistic blend of traditional Chinese herbal tea components, including Lonicerae Japonicae Flos, jasmine, Siraitia grosvenorii, burdock roots, and wolfberry. Each component is selected for its unique therapeutic properties and contribution to overall health benefits. With a resurgence of interest in natural remedies and holistic health, these teas have garnered attention for their potential to restore bodily balance and harmony as per Traditional Chinese Medicine principles. This comprehensive overview delves into the ethnopharmacological background, cultural significance, and scientific evidence supporting the health-promoting effects of these ingredients. Through an examination of their antipyretic, anti-inflammatory, antimicrobial, antiviral, and hepatoprotective properties, this review highlights the tea's potential in contemporary wellness practices, underscoring the blend’s role in preventive health care and its therapeutic efficacy against a range of conditions.


traditional Chinese medicine, herbal tea, Lonicerae Japonicae Flos

Cite This Paper

Yaoxu Zhou, Jiating Liang, Chengyong Wang, Rongting Ye. Therapeutic Synergies in Traditional Chinese Herbal Teas: An Integrative Review of Lonicerae Japonicae Flos and Complementary Constituents. International Journal of Frontiers in Medicine (2024), Vol. 6, Issue 4: 85-91. https://doi.org/10.25236/IJFM.2024.060411.


[1] C.N.P. Commission, Pharmacopoeia of the People's Republic of China: 2005 edition, 2005.

[2] C. Guo, X. Zhang, Y. Yu, Y. Wu, L. Xie, and C. Chang, Lonicerae Japonicae Flos extract and chlorogenic acid attenuates high-fat-diet- induced prediabetes via CTRPs-AdipoRs-AMPK/PPARα axes. Front Nutr 9 (2022) 1007679.

[3] K.H. Lai, Y.L. Chen, M.F. Lin, M. El-Shazly, Y.C. Chang, P.J. Chen, C.H. Su, Y.C. Chiu, A.M. Illias, C.C. Chen, L.Y. Chen, and T.L. Hwang, Lonicerae Japonicae Flos Attenuates Neutrophilic Inflammation by Inhibiting Oxidative Stress. Antioxidants (Basel) 11 (2022).

[4] C. Liu, Z. Yin, T. Feng, M. Zhang, Z. Zhou, and Y. Zhou, An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. J Ethnopharmacol 264 (2021) 113364.

[5] W. Mu, N. Hu, L.H. Zhang, W. Jiang, T. Yan, T. Zhang, A. Liu, Y.Q. Zhang, J. Zhao, L. Shi, and L.N. Liu, Lonicerae japonicae flos ameliorates radiotherapy-induced mesenteric artery endothelial dysfunction through GTPCH1/BH(4)/eNOS pathway. Phytomedicine 102 (2022) 154146.

[6] H. Zhao, S. Zeng, L. Chen, Q. Sun, M. Liu, H. Yang, S. Ren, T. Ming, X. Meng, and H. Xu, Updated pharmacological effects of Lonicerae japonicae flos, with a focus on its potential efficacy on coronavirus disease-2019 (COVID-19). Curr Opin Pharmacol 60 (2021) 200-207.

[7] S. Zheng, S. Liu, A. Hou, S. Wang, Y. Na, J. Hu, H. Jiang, and L. Yang, Systematic review of Lonicerae Japonicae Flos: A significant food and traditional Chinese medicine. Front Pharmacol 13 (2022) 1013992.

[8] Y. Zhang, J. Huang, Y. Xiong, X. Zhang, Y. Lin, and Z. Liu, Jasmine Tea Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior in Rats via the Gut-Brain Axis. Nutrients 14 (2021).

[9] Y. Chen, H. An, Y. Huang, J. Liu, Z. Liu, S. Li, and J. Huang, Analysis of Non-Volatile Compounds in Jasmine Tea and Jasmine Based on Metabolomics and Sensory Evaluation. Foods 12 (2023).

[10] Y. Zhang, Y. Xiong, H. An, J. Li, Q. Li, J. Huang, and Z. Liu, Analysis of Volatile Components of Jasmine and Jasmine Tea during Scenting Process. Molecules 27 (2022).

[11] X. Gong, N. Chen, K. Ren, J. Jia, K. Wei, L. Zhang, Y. Lv, J. Wang, and M. Li, The Fruits of Siraitia grosvenorii: A Review of a Chinese Food-Medicine. Front Pharmacol 10 (2019) 1400.

[12] Y. Guo, X. Chen, P. Gong, H. Long, J. Wang, W. Yang, and W. Yao, Siraitia grosvenorii As a Homologue of Food and Medicine: A Review of Biological Activity, Mechanisms of Action, Synthetic Biology, and Applications in Future Food. J Agric Food Chem (2024).

[13] J. Wu, Y. Jian, H. Wang, H. Huang, L. Gong, G. Liu, Y. Yang, and W. Wang, A Review of the Phytochemistry and Pharmacology of the Fruit of Siraitia grosvenorii (Swingle): A Traditional Chinese Medicinal Food. Molecules 27 (2022).

[14] J. Duan, D. Zhu, X. Zheng, Y. Ju, F. Wang, Y. Sun, and B. Fan, Siraitia grosvenorii (Swingle) C. Jeffrey: Research Progress of Its Active Components, Pharmacological Effects, and Extraction Methods. Foods 12 (2023).

[15] C. Li, L.M. Lin, F. Sui, Z.M. Wang, H.R. Huo, L. Dai, and T.L. Jiang, Chemistry and pharmacology of Siraitia grosvenorii: a review. Chin J Nat Med 12 (2014) 89-102.

[16] Y.S. Chan, L.N. Cheng, J.H. Wu, E. Chan, Y.W. Kwan, S.M. Lee, G.P. Leung, P.H. Yu, and S.W. Chan, A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19 (2011) 245-54.

[17] T.M.A. Moro, and T.P.S.C. M, Burdock (Arctium lappa L) roots as a source of inulin-type fructans and other bioactive compounds: Current knowledge and future perspectives for food and non-food applications. Food Res Int 141 (2021) 109889.

[18] Z.F. Ma, H. Zhang, S.S. Teh, C.W. Wang, Y. Zhang, F. Hayford, L. Wang, T. Ma, Z. Dong, Y. Zhang, and Y. Zhu, Goji Berries as a Potential Natural Antioxidant Medicine: An Insight into Their Molecular Mechanisms of Action. Oxid Med Cell Longev 2019 (2019) 2437397.

[19] Y. Sun, J. Rukeya, W. Tao, P. Sun, and X. Ye, Bioactive compounds and antioxidant activity of wolfberry infusion. Sci Rep 7 (2017) 40605.

[20] Z.Q. Zhou, J. Xiao, H.X. Fan, Y. Yu, R.R. He, X.L. Feng, H. Kurihara, K.F. So, X.S. Yao, and H. Gao, Polyphenols from wolfberry and their bioactivities. Food Chem 214 (2017) 644-654.

[21] M.S. Kim, D.S. Kim, H.J. Yuk, S.H. Kim, W.K. Yang, G.D. Park, K.S. Kim, W.J. Ham, and Y.Y. Sung, Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients 15 (2023).

[22] Y.M. Lee, M. Kim, H.J. Yuk, S.H. Kim, and D.S. Kim, Siraitia grosvenorii Residual Extract Inhibits Inflammation in RAW264.7 Macrophages and Attenuates Osteoarthritis Progression in a Rat Model. Nutrients 15 (2023).

[23] Y.Y. Sung, M. Kim, H.J. Yuk, S.H. Kim, W.K. Yang, G.D. Park, K.S. Kim, W.J. Ham, and D.S. Kim, Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Mouse Model of Respiratory Disease Induced by Particulate Matter 10 Plus Diesel Exhaust Particles. Nutrients 15 (2023).

[24] K. Ma, W. Sheng, X. Song, J. Song, Y. Li, W. Huang, and Y. Liu, Chlorogenic Acid from Burdock Roots Ameliorates Oleic Acid-Induced Steatosis in HepG2 Cells through AMPK/ACC/CPT-1 Pathway. Molecules 28 (2023).

[25] S.C. Mondal, and J.B. Eun, Mechanistic insights on burdock (Arctium lappa L.) extract effects on diabetes mellitus. Food Sci Biotechnol 31 (2022) 999-1008.

[26] H. Liu, X. Zhou, S. Huang, J. Yang, R. Liu, and C. Liu, Lycium Barbarum Polysaccharides and Wolfberry Juice Prevent DEHP-Induced Hepatotoxicity via PXR-Regulated Detoxification Pathway. Molecules 26 (2021).

[27] Y. Tian, T. Xia, X. Qiang, Y. Zhao, S. Li, Y. Wang, Y. Zheng, J. Yu, J. Wang, and M. Wang, Nutrition, Bioactive Components, and Hepatoprotective Activity of Fruit Vinegar Produced from Ningxia Wolfberry. Molecules 27 (2022).