Academic Journal of Medicine & Health Sciences, 2024, 5(6); doi: 10.25236/AJMHS.2024.050607.
Haochen Liang1, Ge Yang2, Zhi Yang1, Zhenhao Luo1
1Department of Chemical and Biochemical Engineering, Rutgers University, NJ, United States
2Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
Sickle cell disease (SCD) is one of the most common genetic disorders worldwide. In some developing nations, up to 90% of people with such a disorder would die before their fifth birthday. In the contemporary genomic era, an affordable gene editing therapy could make it possible to end this tormont once for all. In this proposal, using a DNA nanoparticle as delivery vehicle formulated with CD34 antibody, we are introducing the CRISPR-deprived, single-base altering system, the adenine-base editor (ABE), to edit the disease genotype CD34+ hematopoietic stem cells (HSC) in patient bone marrow into a non-pathological, naturally occurring genotype.
Sickle Cell Disease (SCD), DNA Cages Self-assemble, Adenine-Base Editor (ABE), Nanoparticle Drug
Haochen Liang, Ge Yang, Zhi Yang, Zhenhao Luo. Innovation Method to Deliver Gene Editor ABE to Treat Sickle Cell Disease by Nanotechnology Combined with DNA Origami. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 6: 45-54. https://doi.org/10.25236/AJMHS.2024.050607.
[1] Rees DC. Williams TN. Gladwin MT. Sickle-cell disease. Lancet. 2010 Dec 11; 376(9757): 2018-31. doi: 10. 1016/S0140-6736(10)61029-X. Epub 2010 Dec 3. PMID: 21131035.
[2] Piel FB. Steinberg MH. Rees DC. Sickle Cell Disease. N Engl J Med. 2017 Jul 20; 377(3): 305. doi: 10. 1056/NEJMc1706325. PMID: 28723338. Vaccine excipients summary https: //www. pharmaexcipients. com/stabilizer/vaccine-excipient-summary/
[3] Yip BH. Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules. 2020 May 30; 10(6): 839. doi: 10. 3390/biom10060839. PMID: 32486234; PMCID: PMC7356196.
[4] Rosenblum D. Gutkin A. Kedmi R. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv. 2020; 6(47): eabc9450. Published 2020 Nov 18. doi: 10. 1126/sciadv. abc9450
[5] Sun W. Ji W. Hall JM. Hu Q. Wang C. Beisel CL. Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015 Oct 5; 54(41): 12029-33. doi: 10. 1002/anie. 201506030. Epub 2015 Aug 27. PMID: 26310292; PMCID: PMC4677991.
[6] Newby. G. A. Yen. J. S. Woodard. K. J. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595. 295–302 (2021). https: //doi. org/10. 1038/s41586-021-03609-w
[7] Frenzel A. Hust M. Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013; 4: 217. Published 2013 Jul 29. doi: 10. 3389/fimmu. 2013. 00217
[8] Strehblow C. Schuster M. Moritz T. Kirch HC. Opalka B. Petri JB. Monoclonal antibody-polyethyleneimine conjugates targeting Her-2/neu or CD90 allow cell type-specific nonviral gene delivery. J Control Release. 2005 Feb 16; 102(3): 737-47. doi: 10. 1016/j. jconrel. 2004. 10. 033. PMID: 15681094.
[9] Zhang S. Guo F. Yan W. Dai Z. Dong W. Zhou J. Zhang W. Xin F. Jiang M. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Front Bioeng Biotechnol. 2020 Jan 28; 7: 459. doi: 10. 3389/fbioe. 2019. 00459. PMID: 32047743; PMCID: PMC6997136.
[10] W. T. Godbey. K. K. W. Antonios G. Mikos. Poly (ethylenimine) and its role in gene delivery. Controlled Release. 1999. 60(2-3): p. 149-60.
[11] Sahoko Matsuoka. Yasuhiro Ebihara. Ming-jiang Xu. Takefumi Ishii. Daisuke Sugiyama. Hiroshi Yoshino. Takahiro Ueda. Atsushi Manabe. Ryuhei Tanaka. Yasuo Ikeda. Tatsutoshi Nakahata. Kohichiro Tsuji; CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages. Blood 2001; 97 (2): 419–425. doi: doi: 10. 1182/blood. V97. 2. 41