Welcome to Francis Academic Press

Academic Journal of Medicine & Health Sciences, 2024, 5(10); doi: 10.25236/AJMHS.2024.051005.

Research Progress on the Impact of MCU on Myocardial Mitochondrial Calcium Metabolism during Exercise

Author(s)

Hainiu Wang

Corresponding Author:
Hainiu Wang
Affiliation(s)

Geely University of China, Chengdu, China

Abstract

This article reviews recent research advances regarding the impact of the Mitochondrial Calcium Uniporter (MCU) on myocardial mitochondrial calcium metabolism during exercise, aiming to explore the crucial role of MCU in regulating calcium homeostasis in cardiomyocytes and protecting the myocardium from exercise-induced injury. Through a systematic review and analysis of relevant literature, we summarize the structure and function of MCU, its expression changes during exercise preconditioning and high-intensity exercise, as well as its regulatory mechanisms on myocardial mitochondrial calcium metabolism. Our analysis reveals that MCU exerts a significant influence on myocardial mitochondrial calcium metabolism during exercise, maintaining mitochondrial calcium homeostasis through the regulation of calcium ion transport and thereby protecting the myocardium from damage. Future research should delve deeper into the regulatory mechanisms of MCU and its specific roles in cardiovascular diseases, providing novel targets and strategies for exercise-based cardiac protection and cardiovascular disease treatment.

Keywords

Mitochondrial Calcium Uniporter (MCU); Exercise-Induced Myocardial Protection; Mitochondrial Calcium Metabolism

Cite This Paper

Hainiu Wang. Research Progress on the Impact of MCU on Myocardial Mitochondrial Calcium Metabolism during Exercise. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 10: 27-32. https://doi.org/10.25236/AJMHS.2024.051005.

References

[1] Gunter TE, Yule DI, Gunter KK, et al. Calcium and mitochondria[J]. FEBS Lett, 2004, 567(1): 96-102.

[2] Schatz G. The magic garden[J]. Annu Rev Biochem, 2007, 76: 673-678.

[3] Lu Jiuwei, Zhai Yujia, Sun Fei. Research Progress in Mitochondrial Calcium Ion Transport [J]. Acta Biophysica Sinica, 2013, 29(3): 167-180.

[4] Carafoli E. The fateful encounter of mitochondria with calcium: how did it happen?[J]. Biochim Biophys Acta, 2010, 1797(6-7): 595-606.

[5] Pizzo P, Drago I, Filadi R, et al Mitochondrial Ca2+homeostasis: mechanism, role, and tissue specificities[J]. Pflügers Arch, 2012, 464(1): 3-17.

[6] McCormack JG, Denton RM. Role of calcium ions in the regulation of intramitochondrial metabolism. Properties of the Ca2+-sensitive dehydrogenases within intact uncoupled mitochondria from the white and brown adipose tissue of the rat[J]. Biochem J, 1980, 190(1): 95-105.

[7] Cortassa S, Aon MA, Marban E, Winslow R L, O'Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics[J]. Biophys J, 2003, 84(4): 2734-2755.

[8] Vieira HL, Kroemer G. Pathophysiology of mitochondrial cell death control[J]. Cell Mol Life Sci, 1999, 56(11-12): 971-976.

[9] Gunter TE, Sheu SS. Characteristics and possible functions of mitochondrial Ca2+ transport mechanisms[J]. Biochim Biophys Acta, 2009, 1787(11): 1291-1308.

[10] Griffiths EJ. Mitochondrial calcium transport in the heart: Physiological and pathological roles[J]. J Mol Cell Cardiol, 2009, 46(6): 789-803.

[11] Castaldo P, Cataldi M, Magi S, et al. Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases[J]. Prog Neurobiol, 2009, 87 (1): 58-79.

[12] Contreras L, Drago I, Zampese E, et al. Mitochondria: the calcium connection[J]. Biochim Biophys Acta, 2010, 1797(6-7): 607-618.

[13] Perocchi F, Gohil VM, Girgis HS, et al MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake[J]. Nature, 2010, 467(7313): 291-296.

[14] Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: Molecular determinants and functional consequences[J]. Physiol Rev, 2006, 86(1): 369-408.

[15] Montero M, Alonso MT, Carnicero E, et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion[J]. Nat Cell Biol, 2000, 2(2): 57-61.

[16] Colombini M. The VDAC channel: molecular basis for selectivity[J]. Biochim Biophys Acta, 2016, 1863(10): 2498- 2502.

[17] Liao Y, Hao Y, Chen H, et al. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein Cell, 2015, 6(6): 434-442.

[18] Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca2+[J]. World J Biol Chem, 2015, 6(4): 310-323.

[19] De Stefani D, Raffaello A, Teardo E, et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter[J]. Nature, 2011, 476(7360): 336-340.

[20] Buntinas L, Gunter KK, Sparagna G, et al. The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria[J]. Biochim Biophys Acta, 2001, 1504(2-3): 248-261.

[21] Ryu SY, Beutner G, Kinnally K, et al. Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts[J]. J Biol Chem, 2011, 286(24): 21324-21329.

[22] Nowikovsky K, Pozzan T, Rizzuto R, et al. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1[J]. J Gen Physiol, 2012, 139(6): 445-454.

[23] Harris ET, Booth R, Cooper MB. The effect of superoxide generation on the ability of mitochondria to take up and retain Ca2+[J]. FEBS Lett, 1982, 146(2): 267-272.

[24] Liu Jianhua, Chang Bo. Effects of Aralia elata on Free Calcium in Myocardial Mitochondria of Overtrained Rats [J]. Journal of Tianjin University of Sport, 2006, 21(5): 423.

[25] Sottocasa G, Sandri G, Panfili E, et al. Isolation of a soluble Ca2+ binding glycoprotein from oxliver mitochondria[J]. Biochem Biophys Res Commun, 1972, 47(4): 808-813.

[26] Saris NE, Sirota TV, Virtanen I, et al. Inhibition of the mitochondrial calcium uniporter by antibodies against a 40-kDa glycoproteinT[J]. J Bioenerg Biomembr, 1993, 25(3): 307-312.

[27] Perocchi F, Gohil VM, Girgis HS, et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake[J]. Nature, 2010, 467(7313): 291-296.

[28] Zazueta C, Masso F, Paez A, et al. Identification of a 20-kDa protein with calcium uptake transport activity. Reconstitution in a membrane model[J]. J Bioenerg Biomembr, 1994, 26(5): 555-562.

[29] Drago I, Pizzo P, Pozzan T. After half a century mitochondrial calcium in- and efflux machineries reveal themselves[J]. EMBO J, 2011, 30(20): 4119-4125.

[30] Plovanich M,Bogorad RL,Sancak Y,et al. MICU2, a paralog of MICU1, resides within the mitochon drial uniporter complex to regulate calcium handling[J].PLoS One,2013, 8(2): e55785.

[31] Holmstrom KM, Pan X, Liu JC, et al. Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter[J]. J Mol Cell Cardiol, 2015, 85: 178-182.

[32] Pan X, Liu J,Nguyen T,et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter[J]. Nat Cell Biol, 2013, 15(12): 1464-1472.

[33] Beck SJ, Guo L, Phensy A, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease[J]. Nat Commun, 2016, 7: 11483.

[34] Baughman JM, Perocchi F, Girgis HS, et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter[J]. Nature, 2011, 476(7360): 341-345.

[35] Martell JD, Deerinck TJ, Sancak Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy[J]. Nat Biotechnol, 2012, 30(11): 1143-1148.

[36] Xie Xiaoting, Xu Bin, Li Yang. Ion Channels in Mitochondria [J]. Journal of Clinical Electrocardiology, 2016, 25(5): 368-372.

[37] Yang Jie, Lv Hongwei. Research Progress on the Relationship between Mitochondrial Calcium Uniporter and Mitochondrial Stress [J]. Life Science Research, 2016, 20(2): 178-182.

[38] Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle[J]. Am J Physiol Cell Physiol, 2004, 287(4): C817-833.

[39] Brown MR, Miller Jr FJ, Li WG, et al. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells[J]. Circ Res, 1999, 85(6): 524-533.

[40] Giacomello M, Drago I, Pizzo P, et al. Mitochondrial Ca2+ as a key regulator of cell life and death[J]. Cell Death Differ, 2007, 14(7): 1267-1274.

[41] Pivovarova NB, Andrews SB. Calcium-dependent mitochondrial function and dysfunction in neurons[J]. FEBS J, 2010, 277(18): 3622-3636.

[42] Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy[J]. Biochem Biophys Acta, 1998, 1366(1-2): 177-196.

[43] Feng Weiquan. Biochemical Diagnosis of Exercise Fatigue and Overtraining - The Third Update on Exercise Biochemistry Dynamics [J]. Journal of Beijing Sport University, 2000, 23(4): 498-502.

[44] Hu Zhigang, Zhou Lei, Ding Shuzhe. Effects of Aerobic Training on Mitochondrial Permeability Transition Pore in Rats Subjected to Exhaustive Exercise [J]. Journal of Shenyang Sport University, 2015, 34(3): 64-67.

[45] Boyce SW, Bartels C, Bolli R, et al. Impact of sodium-hydrogen exchange inhibition by cariporide on death or myocardial infarction in high-risk CABG surgery patients: results of the CABG surgery cohort of the GUARDIAN study[J]. J Thorac Cardiovasc Surg, 2003, 126(2): 420-427.