International Journal of Frontiers in Medicine, 2024, 6(11); doi: 10.25236/IJFM.2024.061102.
Lihua Qin1,2,4, Shu Zhang4, Xiaoqun Duan1,2, Tingchun Wang1,3
1College of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541004, China
2College of Biomedical Industry, Guilin Medical University, Guilin, Guangxi, 541004, China
3Guangzhou Boji Medicine Biotechnology Co., Ltd. No.62, Nanxiang 1st Road, Science City, Huangpu District, Guangzhou,510000, China
4Suzhou Xuhui Analysis Co., Ltd., No.168 Yuanfeng Road, Kunshan, Jiangsu, 215300, China
CRISPR-Cas system, i. e. the adaptive immune system of bacteria and archaea, is a genome editing tool. Among them, CRISPR/CRISPR-related nuclease 9(CRISPR/Cas9) is most used to explore cancer-related drug targets and gene pathways, helping researchers to accelerate research on cancer. Non-small cell lung cancer (NSCLC) is one of the most common lung cancers, but there are still some deficiencies in the related treatments. This article mainly reviews the application of CRISPR/Cas9 in NSCLC in recent years, including drug targets, mutation models, gene and pathway screening, as well as its emerging applications in drug resistance and other aspects, to provide reference for the research of NSCLC.
CRISPR/Cas9, NSCLC, gene editing
Lihua Qin, Shu Zhang, Xiaoqun Duan, Tingchun Wang. Application of CRISPR/Cas9 technique in non-small cell lung cancer. International Journal of Frontiers in Medicine (2024), Vol. 6, Issue 11: 11-16. https://doi.org/10.25236/IJFM.2024.061102.
[1] Hui Cheng, Haoyue Deng, Dongdao Ma, et al.Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system, Heliyon,Volume 10, Issue 20,2024,e39538.
[2] Tabibian M, Moghaddam FS, Motevaseli E, et al. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal. 2024 Oct 17; 22(1):504.
[3] Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180087.
[4] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018 Aug 31;361(6405):866-869.
[5] Li Y, Yang X, Dong Y, et al. CRISPR-Cas12a detection of DNA glycosylases via DNA modification switching. Chem Commun (Camb). 2024 Oct 24;60(86):12569-12572.
[6] Zheng X, Tang X, Wu Y, et al. An efficient CRISPR-Cas12a-mediated MicroRNA knockout strategy in plants. Plant Biotechnol J. 2024 Oct 14.
[7] Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. Biodes Res. 2023 Sep 29;5:0017.
[8] Xu J, Zhang T, Lv X, et al. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods. 2024 Oct 9; 13(19):3200.
[9] Moreno-Sanchez I, Hernandez-Huertas L, Nahon-Cano D, et al. Enhanced RNA-targeting CRISPR-Cas technology in zebrafish. bioRxiv [Preprint]. 2024 Oct 9:2024.10.08.617220.
[10] Wan Y, Helenek C, Coraci D, et al. Optimizing a CRISPR-Cas13d Gene Circuit for Tunable Target RNA Downregulation with Minimal Collateral RNA Cutting. ACS Synth Biol. 2024 Oct 18; 13(10):3212-3230.
[11] Makarova KS, Koonin EV. Annotation and Classification of CRISPR-Cas Systems. Methods Mol Biol. 2015; 1311:47-75.
[12] Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024 May-Jun; 74(3):229-263.
[13] J Saller J, Boyle TA. Molecular Pathology of Lung Cancer. Cold Spring Harb Perspect Med. 2022 Mar 1; 12(3):a037812.
[14] Alexander M, Kim SY, Cheng H. Update 2020: Management of Non-Small Cell Lung Cancer. Lung. 2020 Dec; 198(6):897-907.
[15] Nooreldeen R, Bach H. Current and Future Development in Lung Cancer Diagnosis. Int J Mol Sci. 2021 Aug 12; 22(16):8661,
[16] Liu L, Soler J, Reckamp KL, Sankar K. Emerging Targets in Non-Small Cell Lung Cancer. Int J Mol Sci. 2024 Sep 18;25(18):10046.
[17] Wang Q, Li J, Zhu J, Mao J et al. Genome-wide CRISPR/Cas9 screening for therapeutic targets in NSCLC carrying wild-type TP53 and receptor tyrosine kinase genes. Clin Transl Med. 2022 Jun; 12(6): e882.
[18] Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci. 2021 Nov 15;28(1):77.
[19] Guo C, Ma X, Gao F, et al. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol. 2023 Mar 9; 11:1143157.
[20] Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 2017 Mar;15(3):169-182.
[21] Li Y, Zhu L, Mao J, Zheng H, et al. Genome-scale CRISPR-Cas9 screen identifies PAICS as a therapeutic target for EGFR wild-type non-small cell lung cancer. MedComm (2020). 2024 Mar 9;5(3):e483.
[22] Parma B, Ramesh V, Gollavilli PN, et al. Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting. J Exp Clin Cancer Res. 2021 Aug 7;40(1):248.
[23] Zhou X, Padanad MS, Evers BM,et al. Modulation of Mutant KrasG12D -Driven Lung Tumorigenesis In Vivo by Gain or Loss of PCDH7 Function. Mol Cancer Res. 2019 Feb;17(2):594-603.
[24] Li F, Ng WL, Luster TA, et al. Epigenetic CRISPR Screens Identify Npm1 as a Therapeutic Vulnerability in Non-Small Cell Lung Cancer. Cancer Res. 2020 Sep 1;80(17):3556-3567.
[25] Dompe N, Klijn C, Watson SA,et al. A CRISPR screen identifies MAPK7 as a target for combination with MEK inhibition in KRAS mutant NSCLC. PLoS One. 2018 Jun 18;13(6):e0199264.
[26] Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol. 2014 Sep; 32(9):941-6.
[27] Chen S, Sanjana NE, Zheng K, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015 Mar 12;160(6):1246-60.
[28] Prahallad A, Weiss A, Voshol H, et al. CRISPR Screening Identifies Mechanisms of Resistance to KRASG12C and SHP2 Inhibitor Combinations in Non-Small Cell Lung Cancer. Cancer Res. 2023 Dec 15; 83(24):4130-4141.
[29] Mukhopadhyay S, Huang HY, Lin Z, et al. Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Res. 2023 Dec 15;83(24):4095-4111.
[30] Huang L, Liao Z, Liu Z, et al. Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Front Pharmacol. 2022 May 10;13:900825.
[31] Zhou J, Wang X, Li Z, et al. PIM1 kinase promotes EMT-associated osimertinib resistance via regulating GSK3β signaling pathway in EGFR-mutant non-small cell lung cancer. Cell Death Dis. 2024 Sep 3; 15(9):644.
[32] Vad-Nielsen J, Staunstrup NH, Kjeldsen ML,et al. Genome-wide epigenetic and mRNA-expression profiling followed by CRISPR/Cas9-mediated gene-disruptions corroborate the MIR141/MIR200C-ZEB1/ZEB2-FGFR1 axis in acquired EMT-associated EGFR TKI-resistance in NSCLC cells. Transl Lung Cancer Res. 2023 Jan 31;12(1):42-65.
[33] Terrones M, Deben C, Rodrigues-Fortes F, et al. CRISPR/Cas9-edited ROS1 + non-small cell lung cancer cell lines highlight differential drug sensitivity in 2D vs 3D cultures while reflecting established resistance profiles. J Transl Med. 2024 Mar 3;22(1):234.
[34] Jiang C, Ward NP, Prieto-Farigua N, et al. A CRISPR screen identifies redox vulnerabilities for KEAP1/NRF2 mutant non-small cell lung cancer. Redox Biol. 2022 Aug;54:102358.
[35] Yang Y, Qiu JG, Li Y,et al. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am J Transl Res. 2016 Sep 15;8(9):3986-3994.
[36] Cheung AH, Chow C, Zhang J, et al. Specific targeting of point mutations in EGFR L858R-positive lung cancer by CRISPR/Cas9. Lab Invest. 2018 Jul;98(7):968-976.
[37] Blasco RB, Karaca E, Ambrogio C, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep. 2014 Nov 20;9(4):1219-27.
[38] Hu Q, Remsing Rix LL, Desai B, et al. Cancer-associated fibroblasts confer ALK inhibitor resistance in EML4-ALK -driven lung cancer via concurrent integrin and MET signaling. bioRxiv [Preprint]. 2024 Aug 28:2024.08.27.609975.
[39] Peng R, Zhang R, Lin G, et al. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing. J Mol Diagn. 2017 Sep; 19(5): 766-775.
[40] Maddalo D, Manchado E, Concepcion CP, et al In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014 Dec 18;516(7531):423-7.
[41] Guernet A, Mungamuri SK, Cartier D, et al. CRISPR-Barcoding for Intratumor Genetic Heterogeneity Modeling and Functional Analysis of Oncogenic Driver Mutations. Mol Cell. 2016 Aug 4; 63(3): 526-38.
[42] Banas K, Modarai S, Rivera-Torres N, et al. Exon skipping induced by CRISPR-directed gene editing regulates the response to chemotherapy in non-small cell lung carcinoma cells. Gene Ther. 2022 Jun; 29(6):357-367.
[43] Koo T, Yoon AR, Cho HY,et al. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017 Jul 27;45(13):7897-7908.
[44] Baranova SV, Zhdanova PV, Koveshnikova AD, et al. Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. Int J Mol Sci. 2024 Oct 9;25(19):10862.