Academic Journal of Medicine & Health Sciences, 2024, 5(11); doi: 10.25236/AJMHS.2024.051105.
Meng Li1,2, Yuzeng Huang1, Guangfu Wu1
1Jiangmen Wuyi Hospital of TCM, Jiangmen, China
2Jinan University, Guangzhou, China
Despite a mounting body of evidence suggesting a role for the gut microbiota in kidney diseases, the precise mechanisms underpinning this relationship remain unclear. In this context, we utilized a two-sample Mendelian randomization (MR) analysis and extensive genetic database mining to delineate the potential causal link between the gut microbiota and proteinuria. By utilizing data from European cohorts and genome-wide association studies (GWAS), we identified 14 significant instrumental variables associated with gut microbiome practices. Through rigorous statistical analyses, including MR Egger regression and Inverse Variance Weighted (IVW) method, we demonstrated a significant causal relationship between gut microbiota and proteinuria (P = 0.0004).Sensitivity analysis further corroborated the robustness of our findings. Moreover, by leveraging the Gene Expression Omnibus (GEO) database, we carried out a comprehensive analysis of differentially expressed genes in patients with membranous nephropathy, with a particular focus on those associated with proteinuria. Our findings uncovered key pathways, such as taste transduction and transporter activity, that are modulated by the gut microbiota. Furthermore, we identified specific genes, including znf784 and tmem125, whose expression is regulated by the intestinal flora and is implicated in kidney function.
Gut microbiota, proteinuria, kidney diseases, two-sample Mendelian analysis
Meng Li, Yuzeng Huang, Guangfu Wu. Gut microbiota can relieve proteinuria: A two-sample Mendelian analysis and genetic database mining. Academic Journal of Medicine & Health Sciences (2024), Vol. 5, Issue 11: 35-42. https://doi.org/10.25236/AJMHS.2024.051105.
[1] Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019 Jul 16; 11(7):1613. doi: 10.3390/nu 11071613. PMID: 31315227; PMCID: PMC6682904.
[2] Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, Gao X, Zhu B, Lei XG, Gu Z, Cui W, Xu X, Li Z, Zhu B, Li Y, Chen S, Guo H, Zhang H, Sun J, Zhang M, Hui Y, Zhang X, Liu X, Sun B, Wang L, Qiu Q, Zhang Y, Li X, Liu W, Xue R, Wu H, Shao D, Li J, Zhou Y, Li S, Yang R, Pedersen OB, Yu Z, Ehrlich SD, Ren F. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 2020 Dec; 69(12):2131-2142. doi: 10.1136/gutjnl- 2019- 319766. Epub 2020 Apr 2. PMID: 32241904; PMCID: PMC7677483.
[3] Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol. 2017 Jun; 32(6):921-931. doi: 10.1007/s00467-016-3392-7. Epub 2016 Apr 29. PMID: 27129691; PMCID: PMC5399049.
[4] Zhang P, Wang X, Li S, Cao X, Zou J, Fang Y, Shi Y, Xiang F, Shen B, Li Y, Fang B, Zhang Y, Guo R, Lv Q, Zhang L, Lu Y, Wang Y, Yu J, Xie Y, Wang R, Chen X, Yu J, Zhang Z, He J, Zhan J, Lv W, Nie Y, Cai J, Xu X, Hu J, Zhang Q, Gao T, Jiang X, Tan X, Xue N, Wang Y, Ren Y, Wang L, Zhang H, Ning Y, Chen J, Zhang L, Jin S, Ren F, Ehrlich SD, Zhao L, Ding X. Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease. Genome Biol. 2023 Oct 12; 24(1):226. doi: 10.1186/s13059-023-03056-y. PMID: 37828586; PMCID: PMC10571392.
[5] Peters BA, Qi Q, Usyk M, Daviglus ML, Cai J, Franceschini N, Lash JP, Gellman MD, Yu B, Boerwinkle E, Knight R, Burk RD, Kaplan RC. Association of the gut microbiome with kidney function and damage in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Gut Microbes. 2023 Jan-Dec; 15(1):2186685. doi: 10.1080/19490976.2023.2186685. PMID: 36882941; PMCID: PMC10012940.
[6] Kim JE, Nam H, Park JI, Cho H, Lee J, Kim HE, Kim DK, Joo KW, Kim YS, Kim BS, Park S, Lee H. Gut Microbial Genes and Metabolism for Methionine and Branched-Chain Amino Acids in Diabetic Nephropathy. Microbiol Spectr. 2023 Mar 6; 11(2):e0234422. doi: 10.1128/spectrum.02344-22. Epub ahead of print. PMID: 36877076; PMCID: PMC10100834.
[7] D'Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003 Mar;63(3):809-25. doi: 10.1046/j.1523-1755.2003.00840.x. PMID: 12631062.
[8] Sharma S, Smyth B. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options. Kidney Blood Press Res. 2021;46(4):411-420. doi: 10.1159/000516911. Epub 2021 Jun 15. PMID: 34130301.
[9] Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017 Nov 21; 318(19): 1925-1926. doi: 10.1001/jama.2017.17219. PMID: 29164242.
[10] Li Y, Gu J, Xu F, Zhu Q, Ge D, Lu C. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data. Sci Rep. 2018 Oct 26;8(1):15834. doi: 10.1038/s41598-018-34160-w. PMID: 30367091; PMCID: PMC6203807.
[11] Zhang Y, Zhang J, Wu J, Zhu Q, Chen C, Li Y. Implications of gut microbiota dysbiosis and fecal metabolite changes in psychologically stressed mice. Front Microbiol. 2023 May 5;14:1124454. doi: 10.3389/fmicb.2023.1124454. PMID: 37213506; PMCID: PMC10196128.
[12] Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018 Apr 12;6(2):133-148. doi: 10.1016/j.jcmgh.2018.04.003. PMID: 30023410; PMCID: PMC6047317.
[13] Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ortega-Santos CP, Ter Haar JA, Arciero PJ, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr. 2020 May 12;17(1):24. doi: 10.1186/s12970- 020-00353-w. PMID: 32398103; PMCID: PMC7218537.
[14] Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020 Jan 31;11:25. doi: 10.3389/fendo. 2020. 00025. PMID: 32082260; PMCID: PMC7005631.
[15] Oliveira RA, Cabral V, Torcato I, Xavier KB. Deciphering the quorum-sensing lexicon of the gut microbiota. Cell Host Microbe. 2023 Apr 12;31(4):500-512. doi: 10.1016/j.chom.2023.03.015. PMID: 37054672.
[16] Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021 Aug 5;184(16): 4137-4153.e14. doi: 10.1016/j.cell.2021.06.019. Epub 2021 Jul 12. PMID: 34256014; PMCID: PMC9020749.
[17] Rogers AWL, Tsolis RM, Bäumler AJ. Salmonella versus the Microbiome. Microbiol Mol Biol Rev. 2020 Dec 23;85(1):e00027-19. doi: 10.1128/MMBR.00027-19. PMID: 33361269; PMCID: PMC8549850.
[18] Guzmàn DC, Herrera MO, Brizuela NO, Mejía GB, García EH, Olguín HJ, Peraza AV, Ruíz NL, Del Angel DS. Assessment of Mexican Arnica (Heterotheca inuloides Cass) and Rosemary (Rosmarinus officinalis) Extracts on Dopamine and Selected Biomarkers of Oxidative Stress in Stomach and Brain of Salmonella typhimurium Infected rats. Pharmacogn Mag. 2017 Apr-Jun; 13(50): 203-208. doi: 10.4103/0973-1296.204553. Epub 2017 Apr 18. PMID: 28539708; PMCID: PMC5421413.
[19] Anderson G. Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption by Glyphosate-Based Herbicides. Int J Mol Sci. 2022 Dec 29;24(1):587. doi: 10.3390/ijms24010587. PMID: 36614029; PMCID: PMC9820185.
[20] Riedl RA, Atkinson SN, Burnett CML, Grobe JL, Kirby JR. The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Curr Hypertens Rep. 2017 Apr;19(4):27. doi: 10.1007/s11906-017-0721-6. PMID: 28316052; PMCID: PMC5773096.
[21] Hong K, Yang Q, Yin H, Wei N, Wang W, Yu B. Comprehensive analysis of ZNF family genes in prognosis, immunity, and treatment of esophageal cancer. BMC Cancer. 2023 Apr 3;23(1):301. doi: 10.1186/s12885-023-10779-5. PMID: 37013470; PMCID: PMC10069130.
[22] Fan T, Liu Y, Liu H, Wang L, Tian H, Zheng Y, Zheng B, Xue L, Li C, He J. Transmembrane Protein-Based Risk Model and H3K4me3 Modification Characteristics in Lung Adenocarcinoma. Front Oncol. 2022 Mar 22;12:828814. doi: 10.3389/fonc.2022.828814. PMID: 35392225; PMCID: PMC8980838.
[23] Tapia Contreras C, Hoyer-Fender S. CCDC42 Localizes to Manchette, HTCA and Tail and Interacts With ODF1 and ODF2 in the Formation of the Male Germ Cell Cytoskeleton. Front Cell Dev Biol. 2019 Aug 14;7:151. doi: 10.3389/fcell.2019.00151. PMID: 31475146; PMCID: PMC6702985.
[24] Blekemolen MC, Cao L, Tintor N, de Groot T, Papp D, Faulkner C, Takken FLW. The primary function of Six5 of Fusarium oxysporum is to facilitate Avr2 activity by together manipulating the size exclusion limit of plasmodesmata. Front Plant Sci. 2022 Jul 29;13:910594. doi: 10.3389/fpls. 2022.910594. PMID: 35968143; PMCID: PMC9373983.
[25] Zhu H, Klement JD, Lu C, Redd PS, Yang D, Smith AD, Poschel DB, Zou J, Liu D, Wang PG, Ostrov D, Coant N, Hannun YA, Colby AH, Grinstaff MW, Liu K. Asah2 Represses the p53-Hmox1 Axis to Protect Myeloid-Derived Suppressor Cells from Ferroptosis. J Immunol. 2021 Mar 15; 206(6): 1395-1404. doi: 10.4049/jimmunol.2000500. Epub 2021 Feb 5. PMID: 33547170; PMCID: PMC7946776.
[26] Pei Y, Fan Z, Song Y, Chen C, Mu Y, Li B, Feng Z, Li H, Li K. Viscera Characteristics of MSTN-Edited Heterozygous Pigs. Front Genet. 2022 Mar 1;13:764965. doi: 10.3389/fgene. 2022. 764965. PMID: 35299949; PMCID: PMC8921262.
[27] Cullere X, Plovie E, Bennett PM, MacRae CA, Mayadas TN. The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14284-9. doi: 10.1073/pnas.1510495112. Epub 2015 Nov 4. PMID: 26540726; PMCID: PMC4655542.
[28] Pramanik S, Kutzner A, Heese K. Livebearing or egg-laying mammals: 27 decisive nucleotides of FAM168. Biosci Trends. 2017 May 23;11(2):169-178. doi: 10.5582/bst.2016.01252. Epub 2017 Apr 3. PMID: 28381702.
[29] Kaminski N, Wondisford AR, Kwon Y, Lynskey ML, Bhargava R, Barroso-González J, García-Expósito L, He B, Xu M, Mellacheruvu D, Watkins SC, Modesti M, Miller KM, Nesvizhskii AI, Zhang H, Sung P, O'Sullivan RJ. RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Mol Cell. 2022 Nov 3;82(21):4001-4017.e7. doi: 10.1016/j.molcel.2022.09.025. Epub 2022 Oct 19. PMID: 36265488; PMCID: PMC9713952.
[30] Zhang Y, Chen X, Cao Y, Yang Z. C8B in Complement and Coagulation Cascades Signaling Pathway is a predictor for Survival in HBV-Related Hepatocellular Carcinoma Patients. Cancer Manag Res. 2021 Apr 22;13:3503-3515. doi: 10.2147/CMAR.S302917. PMID: 33911900; PMCID: PMC8075182.